用于快速充电/放电应用的电池热管理系统取得进展

IF 5.1 Q1 POLYMER SCIENCE ACS Macro Letters Pub Date : 2023-12-17 DOI:10.1016/j.ensm.2023.103144
Shahid Ali Khan , Iftikhar Hussain , Amrit Kumar Thakur , Shi Yu , Kwun Ting Lau , Sihong He , Kejian Dong , Jingtan Chen , LI Xiangrong , Muhammad Ahmad , Jiyun Zhao
{"title":"用于快速充电/放电应用的电池热管理系统取得进展","authors":"Shahid Ali Khan ,&nbsp;Iftikhar Hussain ,&nbsp;Amrit Kumar Thakur ,&nbsp;Shi Yu ,&nbsp;Kwun Ting Lau ,&nbsp;Sihong He ,&nbsp;Kejian Dong ,&nbsp;Jingtan Chen ,&nbsp;LI Xiangrong ,&nbsp;Muhammad Ahmad ,&nbsp;Jiyun Zhao","doi":"10.1016/j.ensm.2023.103144","DOIUrl":null,"url":null,"abstract":"<div><p>Battery energy storage systems<span> (BESS) are essential for integrating renewable energy sources<span> and enhancing grid stability and reliability. However, fast charging/discharging of BESS pose significant challenges to the performance, thermal issues, and lifespan. This paper provides not only an overview of the recent advancements of battery thermal management systems (BTMS) for fast charging/discharging of BESS but also machine learning (ML) approach to optimizing its design and operation. Various thermal management strategies are highlighted in this review, such as liquid-based, phase-change material-based, refrigerant-based, and ML-based methods, offering improved thermal performance and better safety for fast charge/discharge applications. Overall, this paper provides a comprehensive and critical analysis of the current advancements and prospects of BESS thermal management and identifies the current research gaps and future directions for developing a more efficient and reliable BESS.</span></span></p></div>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in battery thermal management system for fast charging/discharging applications\",\"authors\":\"Shahid Ali Khan ,&nbsp;Iftikhar Hussain ,&nbsp;Amrit Kumar Thakur ,&nbsp;Shi Yu ,&nbsp;Kwun Ting Lau ,&nbsp;Sihong He ,&nbsp;Kejian Dong ,&nbsp;Jingtan Chen ,&nbsp;LI Xiangrong ,&nbsp;Muhammad Ahmad ,&nbsp;Jiyun Zhao\",\"doi\":\"10.1016/j.ensm.2023.103144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Battery energy storage systems<span> (BESS) are essential for integrating renewable energy sources<span> and enhancing grid stability and reliability. However, fast charging/discharging of BESS pose significant challenges to the performance, thermal issues, and lifespan. This paper provides not only an overview of the recent advancements of battery thermal management systems (BTMS) for fast charging/discharging of BESS but also machine learning (ML) approach to optimizing its design and operation. Various thermal management strategies are highlighted in this review, such as liquid-based, phase-change material-based, refrigerant-based, and ML-based methods, offering improved thermal performance and better safety for fast charge/discharge applications. Overall, this paper provides a comprehensive and critical analysis of the current advancements and prospects of BESS thermal management and identifies the current research gaps and future directions for developing a more efficient and reliable BESS.</span></span></p></div>\",\"PeriodicalId\":18,\"journal\":{\"name\":\"ACS Macro Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Macro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829723005214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829723005214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

电池储能系统(BESS)对于整合可再生能源、提高电网稳定性和可靠性至关重要。然而,快速充放电对 BESS 的性能、热问题和使用寿命提出了重大挑战。本文不仅概述了用于 BESS 快速充放电的电池热管理系统(BTMS)的最新进展,还介绍了优化其设计和运行的机器学习(ML)方法。本综述重点介绍了各种热管理策略,如基于液体、基于相变材料、基于制冷剂和基于 ML 的方法,为快速充放电应用提供更好的热性能和安全性。总之,本文对 BESS 热管理的当前进展和前景进行了全面而严谨的分析,并确定了当前的研究差距和未来的发展方向,以开发更高效、更可靠的 BESS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancements in battery thermal management system for fast charging/discharging applications

Battery energy storage systems (BESS) are essential for integrating renewable energy sources and enhancing grid stability and reliability. However, fast charging/discharging of BESS pose significant challenges to the performance, thermal issues, and lifespan. This paper provides not only an overview of the recent advancements of battery thermal management systems (BTMS) for fast charging/discharging of BESS but also machine learning (ML) approach to optimizing its design and operation. Various thermal management strategies are highlighted in this review, such as liquid-based, phase-change material-based, refrigerant-based, and ML-based methods, offering improved thermal performance and better safety for fast charge/discharge applications. Overall, this paper provides a comprehensive and critical analysis of the current advancements and prospects of BESS thermal management and identifies the current research gaps and future directions for developing a more efficient and reliable BESS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.40
自引率
3.40%
发文量
209
审稿时长
1 months
期刊介绍: ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science. With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.
期刊最新文献
Modeling of Chain Sequence Length and Distribution in Random Copolyesters Light-Driven Organocatalyzed Controlled Radical Copolymerization of (Perfluoroalkyl)ethylenes and Vinyl Esters/Amides Circular Cross-Linked Polyethylene Enabled by In-Chain Ketones. High-Entropy Strategy Flattening Lithium Ion Migration Energy Landscape to Enhance the Conductivity of Garnet-Type Solid-State Electrolytes Fast and generalizable micromagnetic simulation with deep neural nets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1