利用可微分物理学和深度学习同时进行数据同化和心脏电生理学模型校正。

IF 3.6 3区 生物学 Q1 BIOLOGY Interface Focus Pub Date : 2023-12-15 eCollection Date: 2023-12-06 DOI:10.1098/rsfs.2023.0043
Victoriya Kashtanova, Mihaela Pop, Ibrahim Ayed, Patrick Gallinari, Maxime Sermesant
{"title":"利用可微分物理学和深度学习同时进行数据同化和心脏电生理学模型校正。","authors":"Victoriya Kashtanova, Mihaela Pop, Ibrahim Ayed, Patrick Gallinari, Maxime Sermesant","doi":"10.1098/rsfs.2023.0043","DOIUrl":null,"url":null,"abstract":"<p><p>Modelling complex systems, like the human heart, has made great progress over the last decades. Patient-specific models, called 'digital twins', can aid in diagnosing arrhythmias and personalizing treatments. However, building highly accurate predictive heart models requires a delicate balance between mathematical complexity, parameterization from measurements and validation of predictions. Cardiac electrophysiology (EP) models range from complex biophysical models to simplified phenomenological models. Complex models are accurate but computationally intensive and challenging to parameterize, while simplified models are computationally efficient but less realistic. In this paper, we propose a hybrid approach by leveraging deep learning to complete a simplified cardiac model from data. Our novel framework has two components, decomposing the dynamics into a physics based and a data-driven term. This construction allows our framework to learn from data of different complexity, while simultaneously estimating model parameters. First, using <i>in silico</i> data, we demonstrate that this framework can reproduce the complex dynamics of cardiac transmembrane potential even in the presence of noise in the data. Second, using <i>ex vivo</i> optical data of action potentials (APs), we demonstrate that our framework can identify key physical parameters for anatomical zones with different electrical properties, as well as to reproduce the AP wave characteristics obtained from various pacing locations. Our physics-based data-driven approach may improve cardiac EP modelling by providing a robust biophysical tool for predictions.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"13 6","pages":"20230043"},"PeriodicalIF":3.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722217/pdf/","citationCount":"0","resultStr":"{\"title\":\"Simultaneous data assimilation and cardiac electrophysiology model correction using differentiable physics and deep learning.\",\"authors\":\"Victoriya Kashtanova, Mihaela Pop, Ibrahim Ayed, Patrick Gallinari, Maxime Sermesant\",\"doi\":\"10.1098/rsfs.2023.0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modelling complex systems, like the human heart, has made great progress over the last decades. Patient-specific models, called 'digital twins', can aid in diagnosing arrhythmias and personalizing treatments. However, building highly accurate predictive heart models requires a delicate balance between mathematical complexity, parameterization from measurements and validation of predictions. Cardiac electrophysiology (EP) models range from complex biophysical models to simplified phenomenological models. Complex models are accurate but computationally intensive and challenging to parameterize, while simplified models are computationally efficient but less realistic. In this paper, we propose a hybrid approach by leveraging deep learning to complete a simplified cardiac model from data. Our novel framework has two components, decomposing the dynamics into a physics based and a data-driven term. This construction allows our framework to learn from data of different complexity, while simultaneously estimating model parameters. First, using <i>in silico</i> data, we demonstrate that this framework can reproduce the complex dynamics of cardiac transmembrane potential even in the presence of noise in the data. Second, using <i>ex vivo</i> optical data of action potentials (APs), we demonstrate that our framework can identify key physical parameters for anatomical zones with different electrical properties, as well as to reproduce the AP wave characteristics obtained from various pacing locations. Our physics-based data-driven approach may improve cardiac EP modelling by providing a robust biophysical tool for predictions.</p>\",\"PeriodicalId\":13795,\"journal\":{\"name\":\"Interface Focus\",\"volume\":\"13 6\",\"pages\":\"20230043\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722217/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interface Focus\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsfs.2023.0043\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/6 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2023.0043","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/6 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

过去几十年来,复杂系统(如人体心脏)建模取得了长足进步。被称为 "数字双胞胎 "的特定患者模型可以帮助诊断心律失常和个性化治疗。然而,建立高度准确的预测性心脏模型需要在数学复杂性、测量参数化和预测验证之间取得微妙的平衡。心脏电生理学(EP)模型既有复杂的生物物理模型,也有简化的现象学模型。复杂的模型精确度高,但计算量大,参数化难度高;简化的模型计算效率高,但现实性较差。在本文中,我们提出了一种混合方法,利用深度学习从数据中完成简化的心脏模型。我们的新颖框架由两部分组成,将动力学分解为基于物理的项和数据驱动的项。这种结构允许我们的框架从不同复杂度的数据中学习,同时估算模型参数。首先,我们利用硅学数据证明,即使在数据存在噪声的情况下,该框架也能再现心脏跨膜电位的复杂动态。其次,利用动作电位(APs)的体外光学数据,我们证明了我们的框架可以识别具有不同电特性的解剖区域的关键物理参数,并重现从不同起搏位置获得的 AP 波特征。我们基于物理学的数据驱动方法为预测提供了一个强大的生物物理工具,可改善心脏 EP 建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous data assimilation and cardiac electrophysiology model correction using differentiable physics and deep learning.

Modelling complex systems, like the human heart, has made great progress over the last decades. Patient-specific models, called 'digital twins', can aid in diagnosing arrhythmias and personalizing treatments. However, building highly accurate predictive heart models requires a delicate balance between mathematical complexity, parameterization from measurements and validation of predictions. Cardiac electrophysiology (EP) models range from complex biophysical models to simplified phenomenological models. Complex models are accurate but computationally intensive and challenging to parameterize, while simplified models are computationally efficient but less realistic. In this paper, we propose a hybrid approach by leveraging deep learning to complete a simplified cardiac model from data. Our novel framework has two components, decomposing the dynamics into a physics based and a data-driven term. This construction allows our framework to learn from data of different complexity, while simultaneously estimating model parameters. First, using in silico data, we demonstrate that this framework can reproduce the complex dynamics of cardiac transmembrane potential even in the presence of noise in the data. Second, using ex vivo optical data of action potentials (APs), we demonstrate that our framework can identify key physical parameters for anatomical zones with different electrical properties, as well as to reproduce the AP wave characteristics obtained from various pacing locations. Our physics-based data-driven approach may improve cardiac EP modelling by providing a robust biophysical tool for predictions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interface Focus
Interface Focus BIOLOGY-
CiteScore
9.20
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.
期刊最新文献
Fundamental constraints to the logic of living systems. The legacy and evolvability of Pere Alberch's ideas. The logic of monsters: development and morphological diversity in stem-cell-based embryo models. Capacity building in porous materials research for sustainable energy applications. Chem4Energy: a consortium of the Royal Society Africa Capacity-Building Initiative.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1