Ikbel Hadj Hassine, Manel Ben M'hadheb, Mohammed A Almalki, Jawhar Gharbi
{"title":"病毒样颗粒是针对人类病毒的强大疫苗策略。","authors":"Ikbel Hadj Hassine, Manel Ben M'hadheb, Mohammed A Almalki, Jawhar Gharbi","doi":"10.1002/rmv.2498","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays, viruses are not only seen as causative agents of viral infectious diseases but also as valuable research materials for various biomedical purposes, including recombinant protein production. When expressed in living or cell-free expression systems, viral structural proteins self-assemble into virus-like particles (VLPs). Mimicking the native form and size of viruses and lacking the genetic material, VLPs are safe and highly immunogenic and thus can be exploited to develop antiviral vaccines. Some vaccines based on VLPs against various infectious pathogens have already been licenced for human use and are available in the commercial market, the latest of which is a VLP-based vaccine to protect against the novel Coronavirus. Despite the success and popularity of VLP subunit vaccines, many more VLPs are still in different stages of design, production, and approval. There are still many challenges that require to be addressed in the future before this surface display system can be widely used as an effective vaccine strategy in combating infectious diseases. In this review, we highlight the use of structural viral proteins to produce VLPs, emphasising their intrinsic properties, structural classification, and main expression host systems. We also compiled the recent scientific literature about VLP-based vaccines to underline the recent advances in their application as a vaccine strategy for preventing and fighting virulent human pathogens. Finally, we presented the key challenges and possible solutions for VLP-based vaccine production.</p>","PeriodicalId":21180,"journal":{"name":"Reviews in Medical Virology","volume":" ","pages":"e2498"},"PeriodicalIF":9.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virus-like particles as powerful vaccination strategy against human viruses.\",\"authors\":\"Ikbel Hadj Hassine, Manel Ben M'hadheb, Mohammed A Almalki, Jawhar Gharbi\",\"doi\":\"10.1002/rmv.2498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nowadays, viruses are not only seen as causative agents of viral infectious diseases but also as valuable research materials for various biomedical purposes, including recombinant protein production. When expressed in living or cell-free expression systems, viral structural proteins self-assemble into virus-like particles (VLPs). Mimicking the native form and size of viruses and lacking the genetic material, VLPs are safe and highly immunogenic and thus can be exploited to develop antiviral vaccines. Some vaccines based on VLPs against various infectious pathogens have already been licenced for human use and are available in the commercial market, the latest of which is a VLP-based vaccine to protect against the novel Coronavirus. Despite the success and popularity of VLP subunit vaccines, many more VLPs are still in different stages of design, production, and approval. There are still many challenges that require to be addressed in the future before this surface display system can be widely used as an effective vaccine strategy in combating infectious diseases. In this review, we highlight the use of structural viral proteins to produce VLPs, emphasising their intrinsic properties, structural classification, and main expression host systems. We also compiled the recent scientific literature about VLP-based vaccines to underline the recent advances in their application as a vaccine strategy for preventing and fighting virulent human pathogens. Finally, we presented the key challenges and possible solutions for VLP-based vaccine production.</p>\",\"PeriodicalId\":21180,\"journal\":{\"name\":\"Reviews in Medical Virology\",\"volume\":\" \",\"pages\":\"e2498\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Medical Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/rmv.2498\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/rmv.2498","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
Virus-like particles as powerful vaccination strategy against human viruses.
Nowadays, viruses are not only seen as causative agents of viral infectious diseases but also as valuable research materials for various biomedical purposes, including recombinant protein production. When expressed in living or cell-free expression systems, viral structural proteins self-assemble into virus-like particles (VLPs). Mimicking the native form and size of viruses and lacking the genetic material, VLPs are safe and highly immunogenic and thus can be exploited to develop antiviral vaccines. Some vaccines based on VLPs against various infectious pathogens have already been licenced for human use and are available in the commercial market, the latest of which is a VLP-based vaccine to protect against the novel Coronavirus. Despite the success and popularity of VLP subunit vaccines, many more VLPs are still in different stages of design, production, and approval. There are still many challenges that require to be addressed in the future before this surface display system can be widely used as an effective vaccine strategy in combating infectious diseases. In this review, we highlight the use of structural viral proteins to produce VLPs, emphasising their intrinsic properties, structural classification, and main expression host systems. We also compiled the recent scientific literature about VLP-based vaccines to underline the recent advances in their application as a vaccine strategy for preventing and fighting virulent human pathogens. Finally, we presented the key challenges and possible solutions for VLP-based vaccine production.
期刊介绍:
Reviews in Medical Virology aims to provide articles reviewing conceptual or technological advances in diverse areas of virology. The journal covers topics such as molecular biology, cell biology, replication, pathogenesis, immunology, immunization, epidemiology, diagnosis, treatment of viruses of medical importance, and COVID-19 research. The journal has an Impact Factor of 6.989 for the year 2020.
The readership of the journal includes clinicians, virologists, medical microbiologists, molecular biologists, infectious disease specialists, and immunologists. Reviews in Medical Virology is indexed and abstracted in databases such as CABI, Abstracts in Anthropology, ProQuest, Embase, MEDLINE/PubMed, ProQuest Central K-494, SCOPUS, and Web of Science et,al.