等角压制后镍的内应力及其来源

IF 0.8 4区 物理与天体物理 Q4 PHYSICS, APPLIED Technical Physics Letters Pub Date : 2023-12-20 DOI:10.1134/s1063785023700104
{"title":"等角压制后镍的内应力及其来源","authors":"","doi":"10.1134/s1063785023700104","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p>The internal structure of grains, as well as the amplitude of internal stresses and their sources, in ultrafine grained technically pure nickel obtained by equal-channel angular pressing deformation was studied by the method of transmission electron microscopy. Under equal-channel angular pressing, the samples have been subjected to shear deformation by compression along two intersecting channels of equal diameter at an angle of 120° and temperature <em>T</em> = 400°C without intermediate annealing. Number of passes <em>n</em> = 4. The equal-channel angular pressing is found to lead to the formation of particles of secondary phases in ultrafine grained nickel with nanometer size and localized inside, at the boundaries and the joints of grains. The sources of internal stresses are revealed and their amplitude is determined. Determination of the amplitude of internal stresses is based on the determination of the curvature–torsion of the crystal lattice along bending extinction contours. It has been established that the sources of internal stresses are grain joints in which particles of secondary phases are present or absent; grain boundaries at which particles of secondary phases are present or absent; particles located on dislocations inside grains, and, finally, the dislocation structure in grains or parts of grains in which there are no particles of secondary phases. It has been found that internal stresses from all sources involve all grains regardless of their internal structure and are predominantly elastic in nature. This means that equal-channel angular pressing led mainly to the elastic distortion of nickel lattice.</p> </span>","PeriodicalId":784,"journal":{"name":"Technical Physics Letters","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal Stresses and Their Sources in Nickel after Equal-Channel Angular Pressing\",\"authors\":\"\",\"doi\":\"10.1134/s1063785023700104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<span> <h3>Abstract</h3> <p>The internal structure of grains, as well as the amplitude of internal stresses and their sources, in ultrafine grained technically pure nickel obtained by equal-channel angular pressing deformation was studied by the method of transmission electron microscopy. Under equal-channel angular pressing, the samples have been subjected to shear deformation by compression along two intersecting channels of equal diameter at an angle of 120° and temperature <em>T</em> = 400°C without intermediate annealing. Number of passes <em>n</em> = 4. The equal-channel angular pressing is found to lead to the formation of particles of secondary phases in ultrafine grained nickel with nanometer size and localized inside, at the boundaries and the joints of grains. The sources of internal stresses are revealed and their amplitude is determined. Determination of the amplitude of internal stresses is based on the determination of the curvature–torsion of the crystal lattice along bending extinction contours. It has been established that the sources of internal stresses are grain joints in which particles of secondary phases are present or absent; grain boundaries at which particles of secondary phases are present or absent; particles located on dislocations inside grains, and, finally, the dislocation structure in grains or parts of grains in which there are no particles of secondary phases. It has been found that internal stresses from all sources involve all grains regardless of their internal structure and are predominantly elastic in nature. This means that equal-channel angular pressing led mainly to the elastic distortion of nickel lattice.</p> </span>\",\"PeriodicalId\":784,\"journal\":{\"name\":\"Technical Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063785023700104\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063785023700104","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 采用透射电子显微镜方法研究了通过等通道角压变形获得的超细晶粒技术纯镍的晶粒内部结构、内应力振幅及其来源。在等沟道角压下,样品沿两个直径相等的相交沟道以 120° 角和温度 T = 400°C 受压而发生剪切变形,中间不进行退火。压制次数 n = 4。研究发现,等角压制会导致超细晶粒镍中形成纳米级尺寸的次生相颗粒,并集中在晶粒内部、晶粒边界和接合处。揭示了内应力的来源并确定了其振幅。内应力振幅的确定基于沿弯曲消光等值线确定晶格的曲率-扭转。已确定的内应力来源包括:存在或不存在次生相颗粒的晶粒接合处;存在或不存在次生相颗粒的晶粒边界;位于晶粒内部位错上的颗粒,以及晶粒或晶粒部分中不存在次生相颗粒的位错结构。研究发现,无论晶粒的内部结构如何,所有来源的内应力都会涉及所有晶粒,而且主要是弹性内应力。这意味着等通道角压主要导致镍晶格的弹性变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Internal Stresses and Their Sources in Nickel after Equal-Channel Angular Pressing

Abstract

The internal structure of grains, as well as the amplitude of internal stresses and their sources, in ultrafine grained technically pure nickel obtained by equal-channel angular pressing deformation was studied by the method of transmission electron microscopy. Under equal-channel angular pressing, the samples have been subjected to shear deformation by compression along two intersecting channels of equal diameter at an angle of 120° and temperature T = 400°C without intermediate annealing. Number of passes n = 4. The equal-channel angular pressing is found to lead to the formation of particles of secondary phases in ultrafine grained nickel with nanometer size and localized inside, at the boundaries and the joints of grains. The sources of internal stresses are revealed and their amplitude is determined. Determination of the amplitude of internal stresses is based on the determination of the curvature–torsion of the crystal lattice along bending extinction contours. It has been established that the sources of internal stresses are grain joints in which particles of secondary phases are present or absent; grain boundaries at which particles of secondary phases are present or absent; particles located on dislocations inside grains, and, finally, the dislocation structure in grains or parts of grains in which there are no particles of secondary phases. It has been found that internal stresses from all sources involve all grains regardless of their internal structure and are predominantly elastic in nature. This means that equal-channel angular pressing led mainly to the elastic distortion of nickel lattice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technical Physics Letters
Technical Physics Letters 物理-物理:应用
CiteScore
1.50
自引率
0.00%
发文量
44
审稿时长
2-4 weeks
期刊介绍: Technical Physics Letters is a companion journal to Technical Physics and offers rapid publication of developments in theoretical and experimental physics with potential technological applications. Recent emphasis has included many papers on gas lasers and on lasing in semiconductors, as well as many reports on high Tc superconductivity. The excellent coverage of plasma physics seen in the parent journal, Technical Physics, is also present here with quick communication of developments in theoretical and experimental work in all fields with probable technical applications. Topics covered are basic and applied physics; plasma physics; solid state physics; physical electronics; accelerators; microwave electron devices; holography.
期刊最新文献
Bifurcation Analysis of Electrodynamic Systems Containing Nonlinear Semiconductor Microstructures with Negative Differential Conductivity Computational Modeling of the Scenario of Resumption of Covid-19 Waves under Pulse Evolution in New Omicron Lines A Hardware–Software Complex for Diagnostics of a Human Being’s Psychophysiological State during the Solution of Cognitive Tasks Effect of an External Electric Field on the Intracenter Optical Transitions in Quasi-Zero-Dimensional Semiconductor Structures Mathematical Modeling of Diffraction and Parametric Instability Thresholds for Magnetic Nanostructures Based on Magnetically Functionalized Carbon Nanotube Arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1