推断细胞核易位的几何动态

Sirine Amiri, Yirui Zhang, Andonis Gerardos, Cécile Sykes, Pierre Ronceray
{"title":"推断细胞核易位的几何动态","authors":"Sirine Amiri, Yirui Zhang, Andonis Gerardos, Cécile Sykes, Pierre Ronceray","doi":"arxiv-2312.12402","DOIUrl":null,"url":null,"abstract":"The ability of eukaryotic cells to squeeze through constrictions is limited\nby the stiffness of their large and rigid nucleus. However, migrating cells are\noften able to overcome this limitation and pass through constrictions much\nsmaller than their nucleus, a mechanism that is not yet understood. This is\nwhat we address here through a data-driven approach using microfluidic devices\nwhere cells migrate through controlled narrow spaces of sizes comparable to the\nones encountered in physiological situations. Stochastic Force Inference is\napplied to experimental nuclear trajectories and nuclear shape descriptors,\nresulting in equations that effectively describe this phenomenon of nuclear\ntranslocation. By employing a model where the channel geometry is an explicit\nparameter and by training it over experimental data with different sizes of\nconstrictions, we ensure that the resulting equations are predictive to other\ngeometries. Altogether, the approach developed here paves the way for a\nmechanistic and quantitative description of dynamical cell complexity during\nits motility.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring geometrical dynamics of cell nucleus translocation\",\"authors\":\"Sirine Amiri, Yirui Zhang, Andonis Gerardos, Cécile Sykes, Pierre Ronceray\",\"doi\":\"arxiv-2312.12402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability of eukaryotic cells to squeeze through constrictions is limited\\nby the stiffness of their large and rigid nucleus. However, migrating cells are\\noften able to overcome this limitation and pass through constrictions much\\nsmaller than their nucleus, a mechanism that is not yet understood. This is\\nwhat we address here through a data-driven approach using microfluidic devices\\nwhere cells migrate through controlled narrow spaces of sizes comparable to the\\nones encountered in physiological situations. Stochastic Force Inference is\\napplied to experimental nuclear trajectories and nuclear shape descriptors,\\nresulting in equations that effectively describe this phenomenon of nuclear\\ntranslocation. By employing a model where the channel geometry is an explicit\\nparameter and by training it over experimental data with different sizes of\\nconstrictions, we ensure that the resulting equations are predictive to other\\ngeometries. Altogether, the approach developed here paves the way for a\\nmechanistic and quantitative description of dynamical cell complexity during\\nits motility.\",\"PeriodicalId\":501321,\"journal\":{\"name\":\"arXiv - QuanBio - Cell Behavior\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Cell Behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.12402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.12402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

真核细胞挤压通过狭小空间的能力受限于其巨大而坚硬的细胞核的硬度。然而,迁移的细胞往往能够克服这一限制,穿过比细胞核小得多的狭小空间,而这一机制尚不清楚。在这里,我们通过数据驱动的方法,利用微流体设备来解决这个问题,在这些设备中,细胞会通过受控的狭窄空间进行迁移,这些空间的大小与生理情况下遇到的空间大小相当。我们将随机力推理应用于实验核轨迹和核形状描述符,从而得出有效描述这种核迁移现象的方程。通过采用一个以通道几何形状为明确参数的模型,并在具有不同大小限制的实验数据上对其进行训练,我们确保了所得到的方程对其他几何形状具有预测性。总之,本文提出的方法为从机制上定量描述细胞运动过程中的动态复杂性铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inferring geometrical dynamics of cell nucleus translocation
The ability of eukaryotic cells to squeeze through constrictions is limited by the stiffness of their large and rigid nucleus. However, migrating cells are often able to overcome this limitation and pass through constrictions much smaller than their nucleus, a mechanism that is not yet understood. This is what we address here through a data-driven approach using microfluidic devices where cells migrate through controlled narrow spaces of sizes comparable to the ones encountered in physiological situations. Stochastic Force Inference is applied to experimental nuclear trajectories and nuclear shape descriptors, resulting in equations that effectively describe this phenomenon of nuclear translocation. By employing a model where the channel geometry is an explicit parameter and by training it over experimental data with different sizes of constrictions, we ensure that the resulting equations are predictive to other geometries. Altogether, the approach developed here paves the way for a mechanistic and quantitative description of dynamical cell complexity during its motility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Persistent pseudopod splitting is an effective chemotaxis strategy in shallow gradients Geometric Effects in Large Scale Intracellular Flows Motion Ordering in Cellular Polar-polar and Polar-nonpolar Interactions Modelling how lamellipodia-driven cells maintain persistent migration and interact with external barriers Synchronized Memory-Dependent Intracellular Oscillations for a Cell-Bulk ODE-PDE Model in $\mathbb{R}^2$
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1