利用分子编织受电弓生产分子组件的计算力学模型

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2023-12-19 DOI:10.1016/j.xcrp.2023.101750
Byeonghwa Goh, Joonmyung Choi
{"title":"利用分子编织受电弓生产分子组件的计算力学模型","authors":"Byeonghwa Goh, Joonmyung Choi","doi":"10.1016/j.xcrp.2023.101750","DOIUrl":null,"url":null,"abstract":"<p>The weave-based interlocking design has received considerable attention for preparing the patterned linkage of molecules via formation and dissociation of highly non-covalent bonds among molecules. Here, we design the mechanical behavior of a nanoscale pantograph structure in which tetraphenylethene derivatives are interlocked in the form of warp and weft strands <em>in silico</em>. The kinetics related to the width strain of the entire film are evaluated by quantifying the molecular-scale tilting deformation between the warp and weft strands following the inflow and outflow of methanol. The mechanical stiffness, structural durability, and deformation repeatability of the system caused by tightly interlocked molecular strands are investigated together. The cucurbituril hybrids present on the interface are successfully self-assembled into molecular bearings using the in-plane working stroke of the pantograph film.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"96 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computational mechanics model for producing molecular assembly using molecularly woven pantographs\",\"authors\":\"Byeonghwa Goh, Joonmyung Choi\",\"doi\":\"10.1016/j.xcrp.2023.101750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The weave-based interlocking design has received considerable attention for preparing the patterned linkage of molecules via formation and dissociation of highly non-covalent bonds among molecules. Here, we design the mechanical behavior of a nanoscale pantograph structure in which tetraphenylethene derivatives are interlocked in the form of warp and weft strands <em>in silico</em>. The kinetics related to the width strain of the entire film are evaluated by quantifying the molecular-scale tilting deformation between the warp and weft strands following the inflow and outflow of methanol. The mechanical stiffness, structural durability, and deformation repeatability of the system caused by tightly interlocked molecular strands are investigated together. The cucurbituril hybrids present on the interface are successfully self-assembled into molecular bearings using the in-plane working stroke of the pantograph film.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2023.101750\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2023.101750","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过分子间高度非共价键的形成和解离来制备分子的图案化连接,基于编织的联锁设计受到了广泛关注。在这里,我们设计了一种纳米级受电弓结构的机械行为,在这种结构中,四苯基乙烯衍生物以经线和纬线的形式交错在一起。通过量化甲醇流入和流出时经线和纬线之间分子尺度的倾斜变形,评估了与整个薄膜宽度应变有关的动力学。同时还研究了由紧密交错的分子链引起的系统机械刚度、结构耐久性和变形重复性。利用受电弓薄膜的平面内工作冲程,界面上的葫芦丝混合物成功地自组装成分子轴承。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A computational mechanics model for producing molecular assembly using molecularly woven pantographs

The weave-based interlocking design has received considerable attention for preparing the patterned linkage of molecules via formation and dissociation of highly non-covalent bonds among molecules. Here, we design the mechanical behavior of a nanoscale pantograph structure in which tetraphenylethene derivatives are interlocked in the form of warp and weft strands in silico. The kinetics related to the width strain of the entire film are evaluated by quantifying the molecular-scale tilting deformation between the warp and weft strands following the inflow and outflow of methanol. The mechanical stiffness, structural durability, and deformation repeatability of the system caused by tightly interlocked molecular strands are investigated together. The cucurbituril hybrids present on the interface are successfully self-assembled into molecular bearings using the in-plane working stroke of the pantograph film.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Amino acid-dependent phase equilibrium and material properties of tetrapeptide condensates. Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems 4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface Deformation of collagen-based tissues investigated using a systematic review and meta-analysis of synchrotron x-ray scattering studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1