{"title":"确定克尔微环梳齿形成位置的方法","authors":"Hang Shen;Chaoying Zhao","doi":"10.1109/JQE.2023.3335246","DOIUrl":null,"url":null,"abstract":"Realizing quantum micro-comb in micro-resonators has attracted continuous research effort. Kerr micro-combs generated from a micro-ring device can offer an enormous number of coherent wavelengths. The formation position of comb teeth (FPOCT) has been detected in experimental by the non-degenerate optical parametric oscillation OPO process. In this paper, we put forward a method for determining the FPOCT are suitable for both degenerate OPO process and non-degenerate OPO process. Based on second-order auto-correlation function \n<inline-formula> <tex-math>$g^{({2})}(\\tau)$ </tex-math></inline-formula>\n, we give out a comprehensive analysis of FPOCT above and below the threshold. We provides a possible theoretical basis for the manipulation of the comb teeth. Our quantum dynamical explanations show good agreement with the experimental results.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method for Determining the Formation Position of Comb Tooth of Kerr Micro-Ring\",\"authors\":\"Hang Shen;Chaoying Zhao\",\"doi\":\"10.1109/JQE.2023.3335246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Realizing quantum micro-comb in micro-resonators has attracted continuous research effort. Kerr micro-combs generated from a micro-ring device can offer an enormous number of coherent wavelengths. The formation position of comb teeth (FPOCT) has been detected in experimental by the non-degenerate optical parametric oscillation OPO process. In this paper, we put forward a method for determining the FPOCT are suitable for both degenerate OPO process and non-degenerate OPO process. Based on second-order auto-correlation function \\n<inline-formula> <tex-math>$g^{({2})}(\\\\tau)$ </tex-math></inline-formula>\\n, we give out a comprehensive analysis of FPOCT above and below the threshold. We provides a possible theoretical basis for the manipulation of the comb teeth. Our quantum dynamical explanations show good agreement with the experimental results.\",\"PeriodicalId\":13200,\"journal\":{\"name\":\"IEEE Journal of Quantum Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10330587/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10330587/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Method for Determining the Formation Position of Comb Tooth of Kerr Micro-Ring
Realizing quantum micro-comb in micro-resonators has attracted continuous research effort. Kerr micro-combs generated from a micro-ring device can offer an enormous number of coherent wavelengths. The formation position of comb teeth (FPOCT) has been detected in experimental by the non-degenerate optical parametric oscillation OPO process. In this paper, we put forward a method for determining the FPOCT are suitable for both degenerate OPO process and non-degenerate OPO process. Based on second-order auto-correlation function
$g^{({2})}(\tau)$
, we give out a comprehensive analysis of FPOCT above and below the threshold. We provides a possible theoretical basis for the manipulation of the comb teeth. Our quantum dynamical explanations show good agreement with the experimental results.
期刊介绍:
The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.