受直流偏置影响的变流器变压器的强化热力学建模

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2023-11-20 DOI:10.1109/JMMCT.2023.3334563
Suman Yadav;Gourav Kumar Suman;Ram Krishna Mehta
{"title":"受直流偏置影响的变流器变压器的强化热力学建模","authors":"Suman Yadav;Gourav Kumar Suman;Ram Krishna Mehta","doi":"10.1109/JMMCT.2023.3334563","DOIUrl":null,"url":null,"abstract":"DC bias in high-voltage DC transformers, arising from converter operations and DC transmission, poses significant challenges to their performance. The detrimental effects of DC bias primarily manifest in increased temperature, jeopardizing the safe operation of the transformers. This article presents a novel approach by extending the utilization of the Thermal Equivalent Circuit (TEC) to accurately predict temperatures at different elements of a converter transformer under DC bias conditions. Specifically designed for a 240 MVA converter transformer, the TEC incorporates capacitances and dynamic resistances as model parameters. Additionally, an electro-thermal finite element model is implemented to comprehensively analyze the transformer's behavior under varying levels of DC bias. To estimate the TEC parameters, a hybrid GWO-CS (Grey Wolf Optimization – Cuckoo Search) algorithm is employed based on measured values. Furthermore, the paper highlights the impact of DC bias on the converter transformer's life expectancy, considering the aging acceleration factor.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"36-48"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Thermodynamic Modeling of Converter Transformer Influenced by DC Bias\",\"authors\":\"Suman Yadav;Gourav Kumar Suman;Ram Krishna Mehta\",\"doi\":\"10.1109/JMMCT.2023.3334563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DC bias in high-voltage DC transformers, arising from converter operations and DC transmission, poses significant challenges to their performance. The detrimental effects of DC bias primarily manifest in increased temperature, jeopardizing the safe operation of the transformers. This article presents a novel approach by extending the utilization of the Thermal Equivalent Circuit (TEC) to accurately predict temperatures at different elements of a converter transformer under DC bias conditions. Specifically designed for a 240 MVA converter transformer, the TEC incorporates capacitances and dynamic resistances as model parameters. Additionally, an electro-thermal finite element model is implemented to comprehensively analyze the transformer's behavior under varying levels of DC bias. To estimate the TEC parameters, a hybrid GWO-CS (Grey Wolf Optimization – Cuckoo Search) algorithm is employed based on measured values. Furthermore, the paper highlights the impact of DC bias on the converter transformer's life expectancy, considering the aging acceleration factor.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"9 \",\"pages\":\"36-48\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10323159/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10323159/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

高压直流变压器中的直流偏压是由变流器运行和直流输电引起的,这对变压器的性能提出了重大挑战。直流偏压的有害影响主要表现为温度升高,危及变压器的安全运行。本文通过扩展热等效电路 (TEC) 的使用范围,提出了一种新方法,以准确预测直流偏置条件下换流器变压器不同元件的温度。热等效电路专为 240 MVA 变流器变压器设计,将电容和动态电阻作为模型参数。此外,还采用了电热有限元模型,以全面分析变压器在不同直流偏置水平下的行为。为了估算 TEC 参数,采用了基于测量值的混合 GWO-CS(灰狼优化-布谷鸟搜索)算法。此外,考虑到老化加速因素,本文还强调了直流偏压对转换变压器预期寿命的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Thermodynamic Modeling of Converter Transformer Influenced by DC Bias
DC bias in high-voltage DC transformers, arising from converter operations and DC transmission, poses significant challenges to their performance. The detrimental effects of DC bias primarily manifest in increased temperature, jeopardizing the safe operation of the transformers. This article presents a novel approach by extending the utilization of the Thermal Equivalent Circuit (TEC) to accurately predict temperatures at different elements of a converter transformer under DC bias conditions. Specifically designed for a 240 MVA converter transformer, the TEC incorporates capacitances and dynamic resistances as model parameters. Additionally, an electro-thermal finite element model is implemented to comprehensively analyze the transformer's behavior under varying levels of DC bias. To estimate the TEC parameters, a hybrid GWO-CS (Grey Wolf Optimization – Cuckoo Search) algorithm is employed based on measured values. Furthermore, the paper highlights the impact of DC bias on the converter transformer's life expectancy, considering the aging acceleration factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Scale-Compressed Technique in Finite-Difference Time-Domain Method for Multi-Layered Anisotropic Media Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? Table of Contents Editorial Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1