器官移植中的体外基因治疗:考虑因素和临床转化。

IF 3.9 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Human gene therapy Pub Date : 2024-04-01 Epub Date: 2024-01-30 DOI:10.1089/hum.2023.193
Michelle Mendiola Pla, Dawn E Bowles
{"title":"器官移植中的体外基因治疗:考虑因素和临床转化。","authors":"Michelle Mendiola Pla, Dawn E Bowles","doi":"10.1089/hum.2023.193","DOIUrl":null,"url":null,"abstract":"<p><p><i>Ex vivo</i> machine perfusion (EVMP) is rapidly growing in utility during solid organ transplantation. This form of organ preservation is transforming how organs are allocated and expanding the definition of what is considered a suitable organ for transplantation in comparison with traditional static cold storage. All major organs (heart, lung, liver, kidney) have been influenced by this advanced method of organ preservation. This technology also serves as an unprecedented platform for effective administration of advanced therapeutics, including gene therapies, during organ transplantation to optimize and recondition organs <i>ex vivo</i> in an isolated manner. Applying gene therapy interventions through EVMP introduces different considerations and challenges that are unique from gene therapies designed for systemic administration. Considerations involving vector (choice, dose, toxicity), perfusate composition, and perfusion circuit components should be evaluated when developing a gene therapy to administer in this setting. This review explores these aspects and discusses clinical applications in transplantation where gene therapy interventions can be developed relevant to heart, lung, liver, and kidney donor grafts.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044854/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Ex Vivo</i> Gene Therapy in Organ Transplantation: Considerations and Clinical Translation.\",\"authors\":\"Michelle Mendiola Pla, Dawn E Bowles\",\"doi\":\"10.1089/hum.2023.193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Ex vivo</i> machine perfusion (EVMP) is rapidly growing in utility during solid organ transplantation. This form of organ preservation is transforming how organs are allocated and expanding the definition of what is considered a suitable organ for transplantation in comparison with traditional static cold storage. All major organs (heart, lung, liver, kidney) have been influenced by this advanced method of organ preservation. This technology also serves as an unprecedented platform for effective administration of advanced therapeutics, including gene therapies, during organ transplantation to optimize and recondition organs <i>ex vivo</i> in an isolated manner. Applying gene therapy interventions through EVMP introduces different considerations and challenges that are unique from gene therapies designed for systemic administration. Considerations involving vector (choice, dose, toxicity), perfusate composition, and perfusion circuit components should be evaluated when developing a gene therapy to administer in this setting. This review explores these aspects and discusses clinical applications in transplantation where gene therapy interventions can be developed relevant to heart, lung, liver, and kidney donor grafts.</p>\",\"PeriodicalId\":13007,\"journal\":{\"name\":\"Human gene therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044854/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/hum.2023.193\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hum.2023.193","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

体外机器灌注在实体器官移植中的应用正在迅速增长。与传统的静态冷藏相比,这种器官保存方式改变了器官的分配方式,扩大了适合移植器官的定义。所有主要器官(心、肺、肝、肾)都受到了这种先进器官保存方法的影响。这项技术还是一个前所未有的平台,可在器官移植过程中有效施用包括基因疗法在内的先进疗法,以隔离的方式优化和修复体外器官。通过体外机器灌注进行基因治疗干预,需要考虑的因素和面临的挑战与全身给药的基因疗法不同。在开发用于这种环境的基因疗法时,应评估涉及载体(选择、剂量、毒性)、灌注液成分和灌注回路组件的考虑因素。本综述探讨了这些方面,并讨论了基因疗法在移植手术中的临床应用,在移植手术中可开发与心脏、肺、肝脏和肾脏供体移植物相关的基因疗法干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ex Vivo Gene Therapy in Organ Transplantation: Considerations and Clinical Translation.

Ex vivo machine perfusion (EVMP) is rapidly growing in utility during solid organ transplantation. This form of organ preservation is transforming how organs are allocated and expanding the definition of what is considered a suitable organ for transplantation in comparison with traditional static cold storage. All major organs (heart, lung, liver, kidney) have been influenced by this advanced method of organ preservation. This technology also serves as an unprecedented platform for effective administration of advanced therapeutics, including gene therapies, during organ transplantation to optimize and recondition organs ex vivo in an isolated manner. Applying gene therapy interventions through EVMP introduces different considerations and challenges that are unique from gene therapies designed for systemic administration. Considerations involving vector (choice, dose, toxicity), perfusate composition, and perfusion circuit components should be evaluated when developing a gene therapy to administer in this setting. This review explores these aspects and discusses clinical applications in transplantation where gene therapy interventions can be developed relevant to heart, lung, liver, and kidney donor grafts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human gene therapy
Human gene therapy 医学-生物工程与应用微生物
CiteScore
6.50
自引率
4.80%
发文量
131
审稿时长
4-8 weeks
期刊介绍: Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.
期刊最新文献
Neuroimaging Applications for the Delivery and Monitoring of Gene Therapy for Central Nervous System Diseases. Cyclosporin H Improves the Transduction of CD34+ Cells with an Anti-Sickling Globin Vector, a Possible Therapeutic Approach for Sickle Cell Disease. Adeno-Associated Virus Gene Transfer Ameliorates Progression of Skeletal Lesions in Mucopolysaccharidosis IVA Mice. Lentiviral Vector-Mediated Ex Vivo Hematopoietic Stem Cell Gene Therapy for Mucopolysaccharidosis IVA Murine Model. Suppression of CNS APOE4 Expression by miRNAs Delivered by the S2 AAVrh.10 Capsid-Modified AAV Vector.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1