{"title":"探索 RNA 结合蛋白在表观遗传和基因调控中的新作用。","authors":"Pedro Avila-Lopez , Shannon M Lauberth","doi":"10.1016/j.gde.2023.102136","DOIUrl":null,"url":null,"abstract":"<div><p><span>A significant portion of the human proteome comprises RNA-binding proteins (RBPs) that play fundamental roles in numerous </span>biological processes<span><span>. In the last decade, there has been a staggering increase in RBP identification and classification, which has fueled interest in the evolving roles of RBPs and RBP-driven molecular mechanisms. Here, we focus on recent insights into RBP-dependent regulation of the epigenetic and transcriptional landscape. We describe advances in methodologies that define the RNA-protein </span>interactome and machine-learning algorithms that are streamlining RBP discovery and predicting new RNA-binding regions. Finally, we present how RBP dysregulation leads to alterations in tumor-promoting gene expression and discuss the potential for targeting these RBPs for the development of new cancer therapeutics.</span></p></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"84 ","pages":"Article 102136"},"PeriodicalIF":3.7000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring new roles for RNA-binding proteins in epigenetic and gene regulation\",\"authors\":\"Pedro Avila-Lopez , Shannon M Lauberth\",\"doi\":\"10.1016/j.gde.2023.102136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>A significant portion of the human proteome comprises RNA-binding proteins (RBPs) that play fundamental roles in numerous </span>biological processes<span><span>. In the last decade, there has been a staggering increase in RBP identification and classification, which has fueled interest in the evolving roles of RBPs and RBP-driven molecular mechanisms. Here, we focus on recent insights into RBP-dependent regulation of the epigenetic and transcriptional landscape. We describe advances in methodologies that define the RNA-protein </span>interactome and machine-learning algorithms that are streamlining RBP discovery and predicting new RNA-binding regions. Finally, we present how RBP dysregulation leads to alterations in tumor-promoting gene expression and discuss the potential for targeting these RBPs for the development of new cancer therapeutics.</span></p></div>\",\"PeriodicalId\":50606,\"journal\":{\"name\":\"Current Opinion in Genetics & Development\",\"volume\":\"84 \",\"pages\":\"Article 102136\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Genetics & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959437X23001168\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X23001168","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Exploring new roles for RNA-binding proteins in epigenetic and gene regulation
A significant portion of the human proteome comprises RNA-binding proteins (RBPs) that play fundamental roles in numerous biological processes. In the last decade, there has been a staggering increase in RBP identification and classification, which has fueled interest in the evolving roles of RBPs and RBP-driven molecular mechanisms. Here, we focus on recent insights into RBP-dependent regulation of the epigenetic and transcriptional landscape. We describe advances in methodologies that define the RNA-protein interactome and machine-learning algorithms that are streamlining RBP discovery and predicting new RNA-binding regions. Finally, we present how RBP dysregulation leads to alterations in tumor-promoting gene expression and discuss the potential for targeting these RBPs for the development of new cancer therapeutics.
期刊介绍:
Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...]
The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year:
• Cancer Genomics
• Genome Architecture and Expression
• Molecular and genetic basis of disease
• Developmental mechanisms, patterning and evolution
• Cell reprogramming, regeneration and repair
• Genetics of Human Origin / Evolutionary genetics (alternate years)