{"title":"利用机器学习辅助可拉伸传感器阵列实现手势到语音的翻译","authors":"Zhihao Zhou, Kyle Chen, Xiaoshi Li, Songlin Zhang, Yufen Wu, Yihao Zhou, Keyu Meng, Chenchen Sun, Qiang He, Wenjing Fan, Endong Fan, Zhiwei Lin, Xulong Tan, Weili Deng, Jin Yang, Jun Chen","doi":"10.1038/s41928-020-0428-6","DOIUrl":null,"url":null,"abstract":"Signed languages are not as pervasive a conversational medium as spoken languages due to the history of institutional suppression of the former and the linguistic hegemony of the latter. This has led to a communication barrier between signers and non-signers that could be mitigated by technology-mediated approaches. Here, we show that a wearable sign-to-speech translation system, assisted by machine learning, can accurately translate the hand gestures of American Sign Language into speech. The wearable sign-to-speech translation system is composed of yarn-based stretchable sensor arrays and a wireless printed circuit board, and offers a high sensitivity and fast response time, allowing real-time translation of signs into spoken words to be performed. By analysing 660 acquired sign language hand gesture recognition patterns, we demonstrate a recognition rate of up to 98.63% and a recognition time of less than 1 s. Wearable yarn-based stretchable sensor arrays, combined with machine learning, can be used to translate American Sign Language into speech in real time.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41928-020-0428-6","citationCount":"394","resultStr":"{\"title\":\"Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays\",\"authors\":\"Zhihao Zhou, Kyle Chen, Xiaoshi Li, Songlin Zhang, Yufen Wu, Yihao Zhou, Keyu Meng, Chenchen Sun, Qiang He, Wenjing Fan, Endong Fan, Zhiwei Lin, Xulong Tan, Weili Deng, Jin Yang, Jun Chen\",\"doi\":\"10.1038/s41928-020-0428-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Signed languages are not as pervasive a conversational medium as spoken languages due to the history of institutional suppression of the former and the linguistic hegemony of the latter. This has led to a communication barrier between signers and non-signers that could be mitigated by technology-mediated approaches. Here, we show that a wearable sign-to-speech translation system, assisted by machine learning, can accurately translate the hand gestures of American Sign Language into speech. The wearable sign-to-speech translation system is composed of yarn-based stretchable sensor arrays and a wireless printed circuit board, and offers a high sensitivity and fast response time, allowing real-time translation of signs into spoken words to be performed. By analysing 660 acquired sign language hand gesture recognition patterns, we demonstrate a recognition rate of up to 98.63% and a recognition time of less than 1 s. Wearable yarn-based stretchable sensor arrays, combined with machine learning, can be used to translate American Sign Language into speech in real time.\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2020-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/s41928-020-0428-6\",\"citationCount\":\"394\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41928-020-0428-6\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-020-0428-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays
Signed languages are not as pervasive a conversational medium as spoken languages due to the history of institutional suppression of the former and the linguistic hegemony of the latter. This has led to a communication barrier between signers and non-signers that could be mitigated by technology-mediated approaches. Here, we show that a wearable sign-to-speech translation system, assisted by machine learning, can accurately translate the hand gestures of American Sign Language into speech. The wearable sign-to-speech translation system is composed of yarn-based stretchable sensor arrays and a wireless printed circuit board, and offers a high sensitivity and fast response time, allowing real-time translation of signs into spoken words to be performed. By analysing 660 acquired sign language hand gesture recognition patterns, we demonstrate a recognition rate of up to 98.63% and a recognition time of less than 1 s. Wearable yarn-based stretchable sensor arrays, combined with machine learning, can be used to translate American Sign Language into speech in real time.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.