Keyi Yu , Zhenzhou Huang , Yue Xiao , He Gao , Xuemei Bai , Duochun Wang
{"title":"CTX-M 型广谱β-内酰胺酶的全球传播特征:基因组流行病学分析","authors":"Keyi Yu , Zhenzhou Huang , Yue Xiao , He Gao , Xuemei Bai , Duochun Wang","doi":"10.1016/j.drup.2023.101036","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Extended-spectrum β-lactamases (ESBLs) producing bacteria have spread worldwide and become a global public health concern. Plasmid-mediated transfer of ESBLs is an important route for resistance acquisition.</p></div><div><h3>Methods</h3><p>We collected 1345 complete sequences of plasmids containing CTX-Ms from public database. The global transmission pattern of plasmids and evolutionary dynamics of CTX-Ms have been inferred. We applied the pan-genome clustering based on plasmid genomes and evolution analysis to demonstrate the transmission events.</p></div><div><h3>Findings</h3><p>Totally, 48 CTX-Ms genotypes and 186 incompatible types of plasmids were identified. The geographical distribution of CTX-Ms showed significant differences across countries and continents. CTX-M-14 and CTX-M-55 were found to be the dominant genotypes in Asia, while CTX-M-1 played a leading role in Europe. The plasmids can be divided into 12 lineages, some of which forming distinct geographical clusters in Asia and Europe, while others forming hybrid populations. The Inc types of plasmids are lineage-specific, with the CTX-M-1_IncI1-I (Alpha) and CTX-M-65_IncFII (pHN7A8)/R being the dominant patterns of cross-host and cross-regional transmission. The IncI-I (Alpha) plasmids with the highest number, were presumed to form communication groups in Europe-Asia and Asia-America-Oceania, showing the transmission model as global dissemination and regional microevolution. Meanwhile, the main kinetic elements of <em>bla</em><sub>CTX-Ms</sub> showed genotypic preferences. IS<em>Ecpl</em> and IS<em>26</em> were most frequently involved in the transfer of CTX-M-14 and CTX-M-65, respectively. IS<em>15</em> has become a crucial participant in mediating the dissemination of <em>bla</em><sub>CTX-Ms</sub>. Interestingly, <em>bla</em><sub>TEM</sub> and <em>bla</em><sub>CTX-Ms</sub> often coexisted in the same transposable unit. Furthermore, antibiotic resistance genes associated with aminoglycosides, sulfonamides and cephalosporins showed a relatively high frequency of synergistic effects with CTX-Ms.</p></div><div><h3>Conclusions</h3><p>We recognized the dominant <em>bla</em><sub>CTX-Ms</sub> and mainstream plasmids of different continents. The results of this study provide support for a more effective response to the risks associated with the evolution of <em>bla</em><sub>CTX-Ms</sub>-bearing plasmids, and lay the foundation for genotype-specific epidemiological surveillance of resistance, which are of important public health implications.</p></div>","PeriodicalId":51022,"journal":{"name":"Drug Resistance Updates","volume":"73 ","pages":"Article 101036"},"PeriodicalIF":15.8000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136876462300119X/pdfft?md5=a37339fb1d5cc73447ba11bd61364003&pid=1-s2.0-S136876462300119X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Global spread characteristics of CTX-M-type extended-spectrum β-lactamases: A genomic epidemiology analysis\",\"authors\":\"Keyi Yu , Zhenzhou Huang , Yue Xiao , He Gao , Xuemei Bai , Duochun Wang\",\"doi\":\"10.1016/j.drup.2023.101036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Extended-spectrum β-lactamases (ESBLs) producing bacteria have spread worldwide and become a global public health concern. Plasmid-mediated transfer of ESBLs is an important route for resistance acquisition.</p></div><div><h3>Methods</h3><p>We collected 1345 complete sequences of plasmids containing CTX-Ms from public database. The global transmission pattern of plasmids and evolutionary dynamics of CTX-Ms have been inferred. We applied the pan-genome clustering based on plasmid genomes and evolution analysis to demonstrate the transmission events.</p></div><div><h3>Findings</h3><p>Totally, 48 CTX-Ms genotypes and 186 incompatible types of plasmids were identified. The geographical distribution of CTX-Ms showed significant differences across countries and continents. CTX-M-14 and CTX-M-55 were found to be the dominant genotypes in Asia, while CTX-M-1 played a leading role in Europe. The plasmids can be divided into 12 lineages, some of which forming distinct geographical clusters in Asia and Europe, while others forming hybrid populations. The Inc types of plasmids are lineage-specific, with the CTX-M-1_IncI1-I (Alpha) and CTX-M-65_IncFII (pHN7A8)/R being the dominant patterns of cross-host and cross-regional transmission. The IncI-I (Alpha) plasmids with the highest number, were presumed to form communication groups in Europe-Asia and Asia-America-Oceania, showing the transmission model as global dissemination and regional microevolution. Meanwhile, the main kinetic elements of <em>bla</em><sub>CTX-Ms</sub> showed genotypic preferences. IS<em>Ecpl</em> and IS<em>26</em> were most frequently involved in the transfer of CTX-M-14 and CTX-M-65, respectively. IS<em>15</em> has become a crucial participant in mediating the dissemination of <em>bla</em><sub>CTX-Ms</sub>. Interestingly, <em>bla</em><sub>TEM</sub> and <em>bla</em><sub>CTX-Ms</sub> often coexisted in the same transposable unit. Furthermore, antibiotic resistance genes associated with aminoglycosides, sulfonamides and cephalosporins showed a relatively high frequency of synergistic effects with CTX-Ms.</p></div><div><h3>Conclusions</h3><p>We recognized the dominant <em>bla</em><sub>CTX-Ms</sub> and mainstream plasmids of different continents. The results of this study provide support for a more effective response to the risks associated with the evolution of <em>bla</em><sub>CTX-Ms</sub>-bearing plasmids, and lay the foundation for genotype-specific epidemiological surveillance of resistance, which are of important public health implications.</p></div>\",\"PeriodicalId\":51022,\"journal\":{\"name\":\"Drug Resistance Updates\",\"volume\":\"73 \",\"pages\":\"Article 101036\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S136876462300119X/pdfft?md5=a37339fb1d5cc73447ba11bd61364003&pid=1-s2.0-S136876462300119X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Resistance Updates\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136876462300119X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Resistance Updates","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136876462300119X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Global spread characteristics of CTX-M-type extended-spectrum β-lactamases: A genomic epidemiology analysis
Background
Extended-spectrum β-lactamases (ESBLs) producing bacteria have spread worldwide and become a global public health concern. Plasmid-mediated transfer of ESBLs is an important route for resistance acquisition.
Methods
We collected 1345 complete sequences of plasmids containing CTX-Ms from public database. The global transmission pattern of plasmids and evolutionary dynamics of CTX-Ms have been inferred. We applied the pan-genome clustering based on plasmid genomes and evolution analysis to demonstrate the transmission events.
Findings
Totally, 48 CTX-Ms genotypes and 186 incompatible types of plasmids were identified. The geographical distribution of CTX-Ms showed significant differences across countries and continents. CTX-M-14 and CTX-M-55 were found to be the dominant genotypes in Asia, while CTX-M-1 played a leading role in Europe. The plasmids can be divided into 12 lineages, some of which forming distinct geographical clusters in Asia and Europe, while others forming hybrid populations. The Inc types of plasmids are lineage-specific, with the CTX-M-1_IncI1-I (Alpha) and CTX-M-65_IncFII (pHN7A8)/R being the dominant patterns of cross-host and cross-regional transmission. The IncI-I (Alpha) plasmids with the highest number, were presumed to form communication groups in Europe-Asia and Asia-America-Oceania, showing the transmission model as global dissemination and regional microevolution. Meanwhile, the main kinetic elements of blaCTX-Ms showed genotypic preferences. ISEcpl and IS26 were most frequently involved in the transfer of CTX-M-14 and CTX-M-65, respectively. IS15 has become a crucial participant in mediating the dissemination of blaCTX-Ms. Interestingly, blaTEM and blaCTX-Ms often coexisted in the same transposable unit. Furthermore, antibiotic resistance genes associated with aminoglycosides, sulfonamides and cephalosporins showed a relatively high frequency of synergistic effects with CTX-Ms.
Conclusions
We recognized the dominant blaCTX-Ms and mainstream plasmids of different continents. The results of this study provide support for a more effective response to the risks associated with the evolution of blaCTX-Ms-bearing plasmids, and lay the foundation for genotype-specific epidemiological surveillance of resistance, which are of important public health implications.
期刊介绍:
Drug Resistance Updates serves as a platform for publishing original research, commentary, and expert reviews on significant advancements in drug resistance related to infectious diseases and cancer. It encompasses diverse disciplines such as molecular biology, biochemistry, cell biology, pharmacology, microbiology, preclinical therapeutics, oncology, and clinical medicine. The journal addresses both basic research and clinical aspects of drug resistance, providing insights into novel drugs and strategies to overcome resistance. Original research articles are welcomed, and review articles are authored by leaders in the field by invitation.
Articles are written by leaders in the field, in response to an invitation from the Editors, and are peer-reviewed prior to publication. Articles are clear, readable, and up-to-date, suitable for a multidisciplinary readership and include schematic diagrams and other illustrations conveying the major points of the article. The goal is to highlight recent areas of growth and put them in perspective.
*Expert reviews in clinical and basic drug resistance research in oncology and infectious disease
*Describes emerging technologies and therapies, particularly those that overcome drug resistance
*Emphasises common themes in microbial and cancer research