根除疟疾中的半胱氨酸--从材料科学、技术到现场试验

IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Npg Asia Materials Pub Date : 2023-12-22 DOI:10.1038/s41427-023-00516-6
Ashutosh Rathi, Z. Chowdhry, Anand Patel, Siming Zuo, Thulya Chakkumpulakkal Puthan Veettil, John A. Adegoke, Hadi Heidari, Bayden R. Wood, Vidya Praveen Bhallamudi, Weng Kung Peng
{"title":"根除疟疾中的半胱氨酸--从材料科学、技术到现场试验","authors":"Ashutosh Rathi, Z. Chowdhry, Anand Patel, Siming Zuo, Thulya Chakkumpulakkal Puthan Veettil, John A. Adegoke, Hadi Heidari, Bayden R. Wood, Vidya Praveen Bhallamudi, Weng Kung Peng","doi":"10.1038/s41427-023-00516-6","DOIUrl":null,"url":null,"abstract":"Malaria continues to be among the most lethal infectious diseases. Immediate barriers include the detection of low-parasitemia levels in asymptomatic individuals, which act as a reservoir for future infections, and the emergence of multidrug-resistant strains in malaria-endemic, under-resourced regions. The development of technologies for field-deployable devices for early detection and targeted drugs/vaccines is an ongoing challenge. In this respect, the identification of hemozoin during the Plasmodium growth cycle presents a unique opportunity as a biomarker for malaria infection. The last decade has witnessed the development of numerous opto-/magnetic- based ultrasensitive hemozoin sensing technologies with tremendous potential of rapid and accurate malaria diagnosis and drug testing. The unique information in hemozoin formation can also shed light on the development of targeted drugs. Here, we present a comprehensive perspective on state-of-the-art hemozoin-based methodologies for detecting and studying malaria. We discuss the challenges (and opportunities) to expedite the translation of the technology as a point-of-site tool to assist in the global eradication of malaria infection. Malaria continues to be among the most lethal infectious diseases. In the last two decades, we have witnessed unprecedented success in reducing the mortality rate. With the UN resolution of eradicating malaria by 2030 approaching fast, the scientific community has devoted substantial attention to interdisciplinary research using the latest opto-/magnetic-based technologies to detect a novel biomarker coming from the malarial pigment (hemozoin), which also carries vital information for discovering targeted drugs. This perspective article looks into the growing interest in this field and discusses the practical applicability of these sensing technologies.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"15 1","pages":"1-27"},"PeriodicalIF":8.6000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00516-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Hemozoin in malaria eradication—from material science, technology to field test\",\"authors\":\"Ashutosh Rathi, Z. Chowdhry, Anand Patel, Siming Zuo, Thulya Chakkumpulakkal Puthan Veettil, John A. Adegoke, Hadi Heidari, Bayden R. Wood, Vidya Praveen Bhallamudi, Weng Kung Peng\",\"doi\":\"10.1038/s41427-023-00516-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malaria continues to be among the most lethal infectious diseases. Immediate barriers include the detection of low-parasitemia levels in asymptomatic individuals, which act as a reservoir for future infections, and the emergence of multidrug-resistant strains in malaria-endemic, under-resourced regions. The development of technologies for field-deployable devices for early detection and targeted drugs/vaccines is an ongoing challenge. In this respect, the identification of hemozoin during the Plasmodium growth cycle presents a unique opportunity as a biomarker for malaria infection. The last decade has witnessed the development of numerous opto-/magnetic- based ultrasensitive hemozoin sensing technologies with tremendous potential of rapid and accurate malaria diagnosis and drug testing. The unique information in hemozoin formation can also shed light on the development of targeted drugs. Here, we present a comprehensive perspective on state-of-the-art hemozoin-based methodologies for detecting and studying malaria. We discuss the challenges (and opportunities) to expedite the translation of the technology as a point-of-site tool to assist in the global eradication of malaria infection. Malaria continues to be among the most lethal infectious diseases. In the last two decades, we have witnessed unprecedented success in reducing the mortality rate. With the UN resolution of eradicating malaria by 2030 approaching fast, the scientific community has devoted substantial attention to interdisciplinary research using the latest opto-/magnetic-based technologies to detect a novel biomarker coming from the malarial pigment (hemozoin), which also carries vital information for discovering targeted drugs. This perspective article looks into the growing interest in this field and discusses the practical applicability of these sensing technologies.\",\"PeriodicalId\":19382,\"journal\":{\"name\":\"Npg Asia Materials\",\"volume\":\"15 1\",\"pages\":\"1-27\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41427-023-00516-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npg Asia Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41427-023-00516-6\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-023-00516-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hemozoin in malaria eradication—from material science, technology to field test
Malaria continues to be among the most lethal infectious diseases. Immediate barriers include the detection of low-parasitemia levels in asymptomatic individuals, which act as a reservoir for future infections, and the emergence of multidrug-resistant strains in malaria-endemic, under-resourced regions. The development of technologies for field-deployable devices for early detection and targeted drugs/vaccines is an ongoing challenge. In this respect, the identification of hemozoin during the Plasmodium growth cycle presents a unique opportunity as a biomarker for malaria infection. The last decade has witnessed the development of numerous opto-/magnetic- based ultrasensitive hemozoin sensing technologies with tremendous potential of rapid and accurate malaria diagnosis and drug testing. The unique information in hemozoin formation can also shed light on the development of targeted drugs. Here, we present a comprehensive perspective on state-of-the-art hemozoin-based methodologies for detecting and studying malaria. We discuss the challenges (and opportunities) to expedite the translation of the technology as a point-of-site tool to assist in the global eradication of malaria infection. Malaria continues to be among the most lethal infectious diseases. In the last two decades, we have witnessed unprecedented success in reducing the mortality rate. With the UN resolution of eradicating malaria by 2030 approaching fast, the scientific community has devoted substantial attention to interdisciplinary research using the latest opto-/magnetic-based technologies to detect a novel biomarker coming from the malarial pigment (hemozoin), which also carries vital information for discovering targeted drugs. This perspective article looks into the growing interest in this field and discusses the practical applicability of these sensing technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Npg Asia Materials
Npg Asia Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
15.40
自引率
1.00%
发文量
87
审稿时长
2 months
期刊介绍: NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.
期刊最新文献
Relationship between network topology and negative electrode properties in Wadsley–Roth phase TiNb2O7 Recent advances in high-entropy superconductors Intrinsically anisotropic 1D NbTe4 for self-powered polarization-sensitive photodetection Band anisotropy and effective mass renormalization in strained metallic VO2 (101) thin films Molecular beam epitaxial In2Te3 electronic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1