{"title":"在超声辅助盘流变频微反应器中连续合成掺硼氮化碳支撑的银纳米粒子","authors":"Yu-tian Tao, Ke-Jun Wu, Chao-Hong He","doi":"10.1007/s41981-023-00300-1","DOIUrl":null,"url":null,"abstract":"<div><p>The combination of ultrasound and microreactors for the synthesis of nanomaterials is becoming increasingly popular, but effectively altering the ultrasonic field at the microscale to control the crystallization process remains a challenge. Herein, we investigated numerically and experimentally the effects of the ultrasonic field on the synthesis of boron-doped carbon nitride supported silver nanoparticles based on our homemade ultrasound-assisted coiled flow inverter microreactor (UCFIR). Specifically, the ultrasound promotes the radial mixing in the coiled flow inverter microreactor, even under low Reynolds number 10, resulting in better control over the crystallization process. The effects of key parameters, such as ultrasonic field distribution and ultrasonic power, on the particle size and size distribution of Ag/B-g-C<sub>3</sub>N<sub>4</sub> have been demonstrated. The results show that when the ultrasound transducer is positioned on the ‘abc’ sides, the Ag/B-g-C<sub>3</sub>N<sub>4</sub> with small and uniform Ag particles (4.12 ± 1.12 nm) can be obtained. As ultrasound power increased (0–176 W) and residence time decreased (17.5–140 s), the size of silver nanoparticles decreased, and their distribution narrowed.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"177 - 196"},"PeriodicalIF":2.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous synthesis of boron-doped carbon nitride supported silver nanoparticles in an ultrasound-assisted coiled flow inverter microreactor\",\"authors\":\"Yu-tian Tao, Ke-Jun Wu, Chao-Hong He\",\"doi\":\"10.1007/s41981-023-00300-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The combination of ultrasound and microreactors for the synthesis of nanomaterials is becoming increasingly popular, but effectively altering the ultrasonic field at the microscale to control the crystallization process remains a challenge. Herein, we investigated numerically and experimentally the effects of the ultrasonic field on the synthesis of boron-doped carbon nitride supported silver nanoparticles based on our homemade ultrasound-assisted coiled flow inverter microreactor (UCFIR). Specifically, the ultrasound promotes the radial mixing in the coiled flow inverter microreactor, even under low Reynolds number 10, resulting in better control over the crystallization process. The effects of key parameters, such as ultrasonic field distribution and ultrasonic power, on the particle size and size distribution of Ag/B-g-C<sub>3</sub>N<sub>4</sub> have been demonstrated. The results show that when the ultrasound transducer is positioned on the ‘abc’ sides, the Ag/B-g-C<sub>3</sub>N<sub>4</sub> with small and uniform Ag particles (4.12 ± 1.12 nm) can be obtained. As ultrasound power increased (0–176 W) and residence time decreased (17.5–140 s), the size of silver nanoparticles decreased, and their distribution narrowed.</p></div>\",\"PeriodicalId\":630,\"journal\":{\"name\":\"Journal of Flow Chemistry\",\"volume\":\"14 1\",\"pages\":\"177 - 196\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flow Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41981-023-00300-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-023-00300-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Continuous synthesis of boron-doped carbon nitride supported silver nanoparticles in an ultrasound-assisted coiled flow inverter microreactor
The combination of ultrasound and microreactors for the synthesis of nanomaterials is becoming increasingly popular, but effectively altering the ultrasonic field at the microscale to control the crystallization process remains a challenge. Herein, we investigated numerically and experimentally the effects of the ultrasonic field on the synthesis of boron-doped carbon nitride supported silver nanoparticles based on our homemade ultrasound-assisted coiled flow inverter microreactor (UCFIR). Specifically, the ultrasound promotes the radial mixing in the coiled flow inverter microreactor, even under low Reynolds number 10, resulting in better control over the crystallization process. The effects of key parameters, such as ultrasonic field distribution and ultrasonic power, on the particle size and size distribution of Ag/B-g-C3N4 have been demonstrated. The results show that when the ultrasound transducer is positioned on the ‘abc’ sides, the Ag/B-g-C3N4 with small and uniform Ag particles (4.12 ± 1.12 nm) can be obtained. As ultrasound power increased (0–176 W) and residence time decreased (17.5–140 s), the size of silver nanoparticles decreased, and their distribution narrowed.
期刊介绍:
The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.