{"title":"利用 WO_3 纳米针薄膜检测低浓度生物气体的高响应糖尿病和哮喘传感器","authors":"Yoshitake Masuda, Ayako Uozumi","doi":"10.1038/s41427-023-00515-7","DOIUrl":null,"url":null,"abstract":"A diabetes sensor was developed to detect low concentrations of acetone gas, which is a diabetes biomarker. A WO3 nanoneedle film was synthesized via an aqueous process for use as a sensitive sensing membrane. Acetone was adsorbed and oxidized on the WO3 nanoneedle film, which changed the sensor resistance. The sensor exhibited a high response of Ra/Rg = 19.72, where Ra is the sensor resistance in air, and Rg is the sensor resistance in air containing 10 ppmv acetone gas. The sensor also exhibited a high response (25.36) to 1 ppmv NO2, which is related to asthma. Furthermore, the sensor responded to various biogases associated with diseases. The sensor responses to 10 ppmv of the lung cancer marker gases acetaldehyde and toluene were 13.54 and 9.49, respectively. The sensor responses to 10 ppmv isoprene, ethanol, para-xylene, hydrogen, and NH3 were 7.93, 6.33, 4.51, 2.08, and 0.90, respectively. Trace amounts of acetone and NO2 gases (25 and 250 ppbv, respectively) were detected. The limits of detection for acetone and NO2 gases were estimated to be 2.4 and 1.5 ppbv, respectively. The sensor exhibited superior ability to detect low concentrations of biomarker gases. The unique characteristics of the WO3 nanoneedle film contributed to its high response rates. A WO3 nanoneedle film was developed for a gas sensor to detect low concentrations of acetone gas, which is a diabetes biomarker. The sensor exhibited a high response (19.72) to 10 ppmv acetone gas. The sensor also exhibited a high response (25.36) to 1 ppmv NO2, which is related to asthma. The limits of detection for acetone and NO2 gases were estimated to be 2.4 and 1.5 ppbv, respectively. The sensor exhibited superior ability to detect low concentrations of biomarker gases. The unique characteristics of the WO3 nanoneedle film contributed to its high response rates.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"15 1","pages":"1-18"},"PeriodicalIF":8.6000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00515-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Highly responsive diabetes and asthma sensors with WO3 nanoneedle films for the detection of biogases with low concentrations\",\"authors\":\"Yoshitake Masuda, Ayako Uozumi\",\"doi\":\"10.1038/s41427-023-00515-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A diabetes sensor was developed to detect low concentrations of acetone gas, which is a diabetes biomarker. A WO3 nanoneedle film was synthesized via an aqueous process for use as a sensitive sensing membrane. Acetone was adsorbed and oxidized on the WO3 nanoneedle film, which changed the sensor resistance. The sensor exhibited a high response of Ra/Rg = 19.72, where Ra is the sensor resistance in air, and Rg is the sensor resistance in air containing 10 ppmv acetone gas. The sensor also exhibited a high response (25.36) to 1 ppmv NO2, which is related to asthma. Furthermore, the sensor responded to various biogases associated with diseases. The sensor responses to 10 ppmv of the lung cancer marker gases acetaldehyde and toluene were 13.54 and 9.49, respectively. The sensor responses to 10 ppmv isoprene, ethanol, para-xylene, hydrogen, and NH3 were 7.93, 6.33, 4.51, 2.08, and 0.90, respectively. Trace amounts of acetone and NO2 gases (25 and 250 ppbv, respectively) were detected. The limits of detection for acetone and NO2 gases were estimated to be 2.4 and 1.5 ppbv, respectively. The sensor exhibited superior ability to detect low concentrations of biomarker gases. The unique characteristics of the WO3 nanoneedle film contributed to its high response rates. A WO3 nanoneedle film was developed for a gas sensor to detect low concentrations of acetone gas, which is a diabetes biomarker. The sensor exhibited a high response (19.72) to 10 ppmv acetone gas. The sensor also exhibited a high response (25.36) to 1 ppmv NO2, which is related to asthma. The limits of detection for acetone and NO2 gases were estimated to be 2.4 and 1.5 ppbv, respectively. The sensor exhibited superior ability to detect low concentrations of biomarker gases. The unique characteristics of the WO3 nanoneedle film contributed to its high response rates.\",\"PeriodicalId\":19382,\"journal\":{\"name\":\"Npg Asia Materials\",\"volume\":\"15 1\",\"pages\":\"1-18\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41427-023-00515-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npg Asia Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41427-023-00515-7\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-023-00515-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Highly responsive diabetes and asthma sensors with WO3 nanoneedle films for the detection of biogases with low concentrations
A diabetes sensor was developed to detect low concentrations of acetone gas, which is a diabetes biomarker. A WO3 nanoneedle film was synthesized via an aqueous process for use as a sensitive sensing membrane. Acetone was adsorbed and oxidized on the WO3 nanoneedle film, which changed the sensor resistance. The sensor exhibited a high response of Ra/Rg = 19.72, where Ra is the sensor resistance in air, and Rg is the sensor resistance in air containing 10 ppmv acetone gas. The sensor also exhibited a high response (25.36) to 1 ppmv NO2, which is related to asthma. Furthermore, the sensor responded to various biogases associated with diseases. The sensor responses to 10 ppmv of the lung cancer marker gases acetaldehyde and toluene were 13.54 and 9.49, respectively. The sensor responses to 10 ppmv isoprene, ethanol, para-xylene, hydrogen, and NH3 were 7.93, 6.33, 4.51, 2.08, and 0.90, respectively. Trace amounts of acetone and NO2 gases (25 and 250 ppbv, respectively) were detected. The limits of detection for acetone and NO2 gases were estimated to be 2.4 and 1.5 ppbv, respectively. The sensor exhibited superior ability to detect low concentrations of biomarker gases. The unique characteristics of the WO3 nanoneedle film contributed to its high response rates. A WO3 nanoneedle film was developed for a gas sensor to detect low concentrations of acetone gas, which is a diabetes biomarker. The sensor exhibited a high response (19.72) to 10 ppmv acetone gas. The sensor also exhibited a high response (25.36) to 1 ppmv NO2, which is related to asthma. The limits of detection for acetone and NO2 gases were estimated to be 2.4 and 1.5 ppbv, respectively. The sensor exhibited superior ability to detect low concentrations of biomarker gases. The unique characteristics of the WO3 nanoneedle film contributed to its high response rates.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.