Lewis C. Linker, Gary W. Shenk, Gopal Bhatt, Richard Tian, Carl F. Cerco, Isabella Bertani
{"title":"利用空气流域、流域和河口模型综合套件模拟沿海流域的气候变化","authors":"Lewis C. Linker, Gary W. Shenk, Gopal Bhatt, Richard Tian, Carl F. Cerco, Isabella Bertani","doi":"10.1111/1752-1688.13185","DOIUrl":null,"url":null,"abstract":"<p>In 2020, the Chesapeake Bay Program moved to offset impacts from climate change for the 30-year period from 1995 through 2025 by having its seven watershed jurisdictions (Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia, and the District of Columbia) apply additional nutrient pollutant reduction practices. The climate change assessment was performed with integrated models of the Chesapeake watershed, airshed, and estuary. Scenarios run for the years 2025, 2035, 2045, and 2055 estimated effects from the different future climatic conditions. This article presents the results of that assessment and is intended to provide a guide to assist other modeling practitioners in assessing climate change impacts in coastal watersheds. Major influences of climate change that were quantified include increases in precipitation volume, potential evapotranspiration, watershed nutrient loads, tidal water temperature, and sea level. Minor influences quantified in the climate change analysis include changes in nutrient speciation and increases in wet deposition of nitrogen, CO<sub>2</sub>, rainfall intensity, tidal wetland loss, up-estuary salt intrusion, and phytoplankton biomass. To offset climate change impacts from 1995 to 2025 on water quality, the scenarios indicate an additional 2.3 million and 0.3 million kg of nitrogen and phosphorus per annum, respectively, will need to be reduced beyond what is called for in the Chesapeake Total Maximum Daily Load.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13185","citationCount":"0","resultStr":"{\"title\":\"Simulating climate change in a coastal watershed with an integrated suite of airshed, watershed, and estuary models\",\"authors\":\"Lewis C. Linker, Gary W. Shenk, Gopal Bhatt, Richard Tian, Carl F. Cerco, Isabella Bertani\",\"doi\":\"10.1111/1752-1688.13185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 2020, the Chesapeake Bay Program moved to offset impacts from climate change for the 30-year period from 1995 through 2025 by having its seven watershed jurisdictions (Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia, and the District of Columbia) apply additional nutrient pollutant reduction practices. The climate change assessment was performed with integrated models of the Chesapeake watershed, airshed, and estuary. Scenarios run for the years 2025, 2035, 2045, and 2055 estimated effects from the different future climatic conditions. This article presents the results of that assessment and is intended to provide a guide to assist other modeling practitioners in assessing climate change impacts in coastal watersheds. Major influences of climate change that were quantified include increases in precipitation volume, potential evapotranspiration, watershed nutrient loads, tidal water temperature, and sea level. Minor influences quantified in the climate change analysis include changes in nutrient speciation and increases in wet deposition of nitrogen, CO<sub>2</sub>, rainfall intensity, tidal wetland loss, up-estuary salt intrusion, and phytoplankton biomass. To offset climate change impacts from 1995 to 2025 on water quality, the scenarios indicate an additional 2.3 million and 0.3 million kg of nitrogen and phosphorus per annum, respectively, will need to be reduced beyond what is called for in the Chesapeake Total Maximum Daily Load.</p>\",\"PeriodicalId\":17234,\"journal\":{\"name\":\"Journal of The American Water Resources Association\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1752-1688.13185\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The American Water Resources Association\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13185\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13185","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Simulating climate change in a coastal watershed with an integrated suite of airshed, watershed, and estuary models
In 2020, the Chesapeake Bay Program moved to offset impacts from climate change for the 30-year period from 1995 through 2025 by having its seven watershed jurisdictions (Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia, and the District of Columbia) apply additional nutrient pollutant reduction practices. The climate change assessment was performed with integrated models of the Chesapeake watershed, airshed, and estuary. Scenarios run for the years 2025, 2035, 2045, and 2055 estimated effects from the different future climatic conditions. This article presents the results of that assessment and is intended to provide a guide to assist other modeling practitioners in assessing climate change impacts in coastal watersheds. Major influences of climate change that were quantified include increases in precipitation volume, potential evapotranspiration, watershed nutrient loads, tidal water temperature, and sea level. Minor influences quantified in the climate change analysis include changes in nutrient speciation and increases in wet deposition of nitrogen, CO2, rainfall intensity, tidal wetland loss, up-estuary salt intrusion, and phytoplankton biomass. To offset climate change impacts from 1995 to 2025 on water quality, the scenarios indicate an additional 2.3 million and 0.3 million kg of nitrogen and phosphorus per annum, respectively, will need to be reduced beyond what is called for in the Chesapeake Total Maximum Daily Load.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.