含铁一维磁性纳米材料的制备、特性和生物医学应用进展

IF 1.6 Q4 ENGINEERING, BIOMEDICAL Biosurface and Biotribology Pub Date : 2023-12-20 DOI:10.1049/bsb2.12073
Zhongbing Huang, Juan Wang, Ximing Pu, Guangfu Yin
{"title":"含铁一维磁性纳米材料的制备、特性和生物医学应用进展","authors":"Zhongbing Huang, Juan Wang, Ximing Pu, Guangfu Yin","doi":"10.1049/bsb2.12073","DOIUrl":null,"url":null,"abstract":"1D magnetic nanomaterials with iron, with the special physical properties and biological behaviour, have been found to possess the great promising applications in many fields. In this review, the components, structure, physicochemical properties, biocompatibility and in vitro and in vivo biomedical functions of magnetic nanowires (MNWs), nanorods (MNRs) with iron are summarised, especially their anisotropy shape and magnetism result in their many applications in biodetections and medical treatment fields. The potential future functions of these 1D magnetic nanomaterials compared to magnetic nanoparticles also is discussed by highlighting the possibility of integration with other metal‐compositions or bio‐compositions and with existing biotechnology as well as by pointing out their specific properties. Current limitations in the property improvement and issues related with the outcome of the MNRs in the body are also summarised in order to address the remaining challenge for the extended biomedical functions of MNRs in the clinical application field.","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"9 6","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation, properties and biomedical applications progress of 1D magnetic nanomaterials with iron\",\"authors\":\"Zhongbing Huang, Juan Wang, Ximing Pu, Guangfu Yin\",\"doi\":\"10.1049/bsb2.12073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1D magnetic nanomaterials with iron, with the special physical properties and biological behaviour, have been found to possess the great promising applications in many fields. In this review, the components, structure, physicochemical properties, biocompatibility and in vitro and in vivo biomedical functions of magnetic nanowires (MNWs), nanorods (MNRs) with iron are summarised, especially their anisotropy shape and magnetism result in their many applications in biodetections and medical treatment fields. The potential future functions of these 1D magnetic nanomaterials compared to magnetic nanoparticles also is discussed by highlighting the possibility of integration with other metal‐compositions or bio‐compositions and with existing biotechnology as well as by pointing out their specific properties. Current limitations in the property improvement and issues related with the outcome of the MNRs in the body are also summarised in order to address the remaining challenge for the extended biomedical functions of MNRs in the clinical application field.\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":\"9 6\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1049/bsb2.12073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1049/bsb2.12073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

含铁的一维磁性纳米材料具有特殊的物理性质和生物行为,在许多领域都具有广阔的应用前景。在这篇综述中,总结了含铁的磁性纳米线(MNWs)、纳米棒(MNRs)的成分、结构、理化性质、生物相容性和体内外生物医学功能,特别是它们的各向异性形状和磁性使其在生物检测和医疗领域得到广泛应用。与磁性纳米颗粒相比,这些一维磁性纳米材料未来的潜在功能也得到了讨论,强调了与其他金属成分或生物成分以及现有生物技术整合的可能性,并指出了它们的特殊性质。此外,还总结了目前在改善磁性纳米材料特性方面存在的局限性以及与磁性纳米材料在体内的结果有关的问题,以解决在临床应用领域扩展磁性纳米材料的生物医学功能所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation, properties and biomedical applications progress of 1D magnetic nanomaterials with iron
1D magnetic nanomaterials with iron, with the special physical properties and biological behaviour, have been found to possess the great promising applications in many fields. In this review, the components, structure, physicochemical properties, biocompatibility and in vitro and in vivo biomedical functions of magnetic nanowires (MNWs), nanorods (MNRs) with iron are summarised, especially their anisotropy shape and magnetism result in their many applications in biodetections and medical treatment fields. The potential future functions of these 1D magnetic nanomaterials compared to magnetic nanoparticles also is discussed by highlighting the possibility of integration with other metal‐compositions or bio‐compositions and with existing biotechnology as well as by pointing out their specific properties. Current limitations in the property improvement and issues related with the outcome of the MNRs in the body are also summarised in order to address the remaining challenge for the extended biomedical functions of MNRs in the clinical application field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
期刊最新文献
Protein hydrogels for biomedical applications Flow field characteristics and drag reduction performance of high–low velocity stripes on the biomimetic imbricated fish scale surfaces Advancements and challenges in bionic joint lubrication biomaterials for sports medicine Biofunctionalisation strategies of material surface and the inspired biological effects for bone repair Enhancing the biological functionality of poly (lactic-co-glycolic acid) cage-like structures through surface modification with micro- and nano-sized hydroxyapatite particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1