Aqeel Mohd, Gautam J. P., Anusha E., Shariff S. M.
{"title":"高功率光纤耦合二极管激光焊接 10 毫米厚的 Inconel 617 超耐热合金","authors":"Aqeel Mohd, Gautam J. P., Anusha E., Shariff S. M.","doi":"10.2351/7.0001209","DOIUrl":null,"url":null,"abstract":"In the present study, a high beam quality fiber-coupled diode laser was effectively utilized to weld 10-mm thick Inconel 617 superalloy in single pass. Influence of critical parameters of focusing distance and welding speed on weld characteristics was systematically investigated and optimized. At optimum process conditions with the power density of ≈106 W/cm2, crack-free full-penetration weld with minimal distortion, porosity, and no underfill/undercut/root-hump defects were obtained with 97%–99% joint efficiency. The weld joint quality produced was on par with multipass employing conventional lasers and advanced laser-hybrid welding techniques and sufficient enough to apply in various applications of thermal power plants, ship building, and heavy industries.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"72 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-power fiber-coupled diode laser welding of 10-mm thick Inconel 617 superalloy\",\"authors\":\"Aqeel Mohd, Gautam J. P., Anusha E., Shariff S. M.\",\"doi\":\"10.2351/7.0001209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, a high beam quality fiber-coupled diode laser was effectively utilized to weld 10-mm thick Inconel 617 superalloy in single pass. Influence of critical parameters of focusing distance and welding speed on weld characteristics was systematically investigated and optimized. At optimum process conditions with the power density of ≈106 W/cm2, crack-free full-penetration weld with minimal distortion, porosity, and no underfill/undercut/root-hump defects were obtained with 97%–99% joint efficiency. The weld joint quality produced was on par with multipass employing conventional lasers and advanced laser-hybrid welding techniques and sufficient enough to apply in various applications of thermal power plants, ship building, and heavy industries.\",\"PeriodicalId\":50168,\"journal\":{\"name\":\"Journal of Laser Applications\",\"volume\":\"72 4\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2351/7.0001209\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2351/7.0001209","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
In the present study, a high beam quality fiber-coupled diode laser was effectively utilized to weld 10-mm thick Inconel 617 superalloy in single pass. Influence of critical parameters of focusing distance and welding speed on weld characteristics was systematically investigated and optimized. At optimum process conditions with the power density of ≈106 W/cm2, crack-free full-penetration weld with minimal distortion, porosity, and no underfill/undercut/root-hump defects were obtained with 97%–99% joint efficiency. The weld joint quality produced was on par with multipass employing conventional lasers and advanced laser-hybrid welding techniques and sufficient enough to apply in various applications of thermal power plants, ship building, and heavy industries.
期刊介绍:
The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety.
The following international and well known first-class scientists serve as allocated Editors in 9 new categories:
High Precision Materials Processing with Ultrafast Lasers
Laser Additive Manufacturing
High Power Materials Processing with High Brightness Lasers
Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures
Surface Modification
Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology
Spectroscopy / Imaging / Diagnostics / Measurements
Laser Systems and Markets
Medical Applications & Safety
Thermal Transportation
Nanomaterials and Nanoprocessing
Laser applications in Microelectronics.