人工智能育种专家:作物育种的基因组预测

Wanjie Feng , Pengfei Gao , Xutong Wang
{"title":"人工智能育种专家:作物育种的基因组预测","authors":"Wanjie Feng ,&nbsp;Pengfei Gao ,&nbsp;Xutong Wang","doi":"10.1016/j.ncrops.2023.12.005","DOIUrl":null,"url":null,"abstract":"<div><p>The integration of Artificial Intelligence (AI) into crop breeding represents a paradigm shift toward data-driven agricultural practices, aiming to enhance the efficiency and precision of crop improvement. In this perspective, we critically evaluate the impact of genomic prediction models like SoyDNGP (Soybean Deep Neural Genomic Prediction) on crop breeding. We discuss their current applications, challenges, and future potential. Addressing existing obstacles such as optimizing parent selection, accurately predicting the combined effects of multiple traits and genes, advancing explainable deep learning, and incorporating environmental factors, we propose practical approaches to overcome these challenges. Our insights aim to unlock the full potential of AI in genomic prediction, contributing to a comprehensive understanding of AI’s role in agriculture. We advocate for future research efforts that harness AI to cultivate sustainable and equitable food systems.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952623000109/pdfft?md5=91746d4c5a7b94290de699ab78ee9552&pid=1-s2.0-S2949952623000109-main.pdf","citationCount":"0","resultStr":"{\"title\":\"AI breeder: Genomic predictions for crop breeding\",\"authors\":\"Wanjie Feng ,&nbsp;Pengfei Gao ,&nbsp;Xutong Wang\",\"doi\":\"10.1016/j.ncrops.2023.12.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The integration of Artificial Intelligence (AI) into crop breeding represents a paradigm shift toward data-driven agricultural practices, aiming to enhance the efficiency and precision of crop improvement. In this perspective, we critically evaluate the impact of genomic prediction models like SoyDNGP (Soybean Deep Neural Genomic Prediction) on crop breeding. We discuss their current applications, challenges, and future potential. Addressing existing obstacles such as optimizing parent selection, accurately predicting the combined effects of multiple traits and genes, advancing explainable deep learning, and incorporating environmental factors, we propose practical approaches to overcome these challenges. Our insights aim to unlock the full potential of AI in genomic prediction, contributing to a comprehensive understanding of AI’s role in agriculture. We advocate for future research efforts that harness AI to cultivate sustainable and equitable food systems.</p></div>\",\"PeriodicalId\":100953,\"journal\":{\"name\":\"New Crops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949952623000109/pdfft?md5=91746d4c5a7b94290de699ab78ee9552&pid=1-s2.0-S2949952623000109-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Crops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949952623000109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Crops","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949952623000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)与作物育种的结合代表了向数据驱动型农业实践的范式转变,旨在提高作物改良的效率和精度。在这一视角下,我们严格评估了 SoyDNGP(大豆深度神经基因组预测)等基因组预测模型对作物育种的影响。我们讨论了这些模型的当前应用、挑战和未来潜力。针对现有的障碍,如优化亲本选择、准确预测多个性状和基因的综合效应、推进可解释的深度学习以及结合环境因素,我们提出了克服这些挑战的实用方法。我们的见解旨在释放人工智能在基因组预测方面的全部潜力,为全面了解人工智能在农业中的作用做出贡献。我们倡导未来的研究工作利用人工智能来培育可持续和公平的粮食系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI breeder: Genomic predictions for crop breeding

The integration of Artificial Intelligence (AI) into crop breeding represents a paradigm shift toward data-driven agricultural practices, aiming to enhance the efficiency and precision of crop improvement. In this perspective, we critically evaluate the impact of genomic prediction models like SoyDNGP (Soybean Deep Neural Genomic Prediction) on crop breeding. We discuss their current applications, challenges, and future potential. Addressing existing obstacles such as optimizing parent selection, accurately predicting the combined effects of multiple traits and genes, advancing explainable deep learning, and incorporating environmental factors, we propose practical approaches to overcome these challenges. Our insights aim to unlock the full potential of AI in genomic prediction, contributing to a comprehensive understanding of AI’s role in agriculture. We advocate for future research efforts that harness AI to cultivate sustainable and equitable food systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meiosis in plants: From understanding to manipulation Perspectives on developing natural colored cotton through carotenoid biofortification Genome-wide characterization, identification, and isolation of auxin response factor (ARF) gene family in maize Precise control of falling flowers and fruits is a key part of improving quality and efficiency Molecular mechanisms of rice seed germination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1