{"title":"在股骨的有限元分析中设计和模拟晶格结构","authors":"Pourya Bazyar , Ehsan Sheidaee","doi":"10.1016/j.bprint.2023.e00326","DOIUrl":null,"url":null,"abstract":"<div><p>Bone tissue engineering (BTE) research has reached a significant level of maturity. This paper reviews the role of modeling and simulation in BTE, highlighting their exceptional utility in assessing and validating experiments conducted in vitro and in vivo. The study categorizes BTE simulations into three key areas: 1- Modeling Physical Phenomena: This includes simulations based on Computer-Aided Design (CAD), medical imaging, and the finite element method. 2- Structural Complexity and Scaffold Optimization: This involves exploring intricate scaffold structures and optimizing their design. 3- Diverse Simulation Conditions for Lattice structure: This category delves into simulations under varying conditions to understand scaffold behavior. The paper's focus is on CAD-based and medical image-based finite element analysis models of lattice structure, emphasizing their importance in BTE. Two significant findings emerge: 1- In silico experiments offer extraordinary possibilities and economic benefits in BTE research. They provide invaluable insights and reduce the need for resource-intensive physical experiments. 2- Collaborative practices are crucial for advancing BTE research. Collaboration among researchers strengthens the credibility and applicability of quantifiable and structurally sound methodologies within the field, fostering innovation and progress.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"37 ","pages":"Article e00326"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405886623000696/pdfft?md5=d12354bd010e19bf3ae4c09da34851dd&pid=1-s2.0-S2405886623000696-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Design and simulating lattice structures in the FE analysis of the femur bone\",\"authors\":\"Pourya Bazyar , Ehsan Sheidaee\",\"doi\":\"10.1016/j.bprint.2023.e00326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bone tissue engineering (BTE) research has reached a significant level of maturity. This paper reviews the role of modeling and simulation in BTE, highlighting their exceptional utility in assessing and validating experiments conducted in vitro and in vivo. The study categorizes BTE simulations into three key areas: 1- Modeling Physical Phenomena: This includes simulations based on Computer-Aided Design (CAD), medical imaging, and the finite element method. 2- Structural Complexity and Scaffold Optimization: This involves exploring intricate scaffold structures and optimizing their design. 3- Diverse Simulation Conditions for Lattice structure: This category delves into simulations under varying conditions to understand scaffold behavior. The paper's focus is on CAD-based and medical image-based finite element analysis models of lattice structure, emphasizing their importance in BTE. Two significant findings emerge: 1- In silico experiments offer extraordinary possibilities and economic benefits in BTE research. They provide invaluable insights and reduce the need for resource-intensive physical experiments. 2- Collaborative practices are crucial for advancing BTE research. Collaboration among researchers strengthens the credibility and applicability of quantifiable and structurally sound methodologies within the field, fostering innovation and progress.</p></div>\",\"PeriodicalId\":37770,\"journal\":{\"name\":\"Bioprinting\",\"volume\":\"37 \",\"pages\":\"Article e00326\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405886623000696/pdfft?md5=d12354bd010e19bf3ae4c09da34851dd&pid=1-s2.0-S2405886623000696-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprinting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405886623000696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886623000696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Design and simulating lattice structures in the FE analysis of the femur bone
Bone tissue engineering (BTE) research has reached a significant level of maturity. This paper reviews the role of modeling and simulation in BTE, highlighting their exceptional utility in assessing and validating experiments conducted in vitro and in vivo. The study categorizes BTE simulations into three key areas: 1- Modeling Physical Phenomena: This includes simulations based on Computer-Aided Design (CAD), medical imaging, and the finite element method. 2- Structural Complexity and Scaffold Optimization: This involves exploring intricate scaffold structures and optimizing their design. 3- Diverse Simulation Conditions for Lattice structure: This category delves into simulations under varying conditions to understand scaffold behavior. The paper's focus is on CAD-based and medical image-based finite element analysis models of lattice structure, emphasizing their importance in BTE. Two significant findings emerge: 1- In silico experiments offer extraordinary possibilities and economic benefits in BTE research. They provide invaluable insights and reduce the need for resource-intensive physical experiments. 2- Collaborative practices are crucial for advancing BTE research. Collaboration among researchers strengthens the credibility and applicability of quantifiable and structurally sound methodologies within the field, fostering innovation and progress.
期刊介绍:
Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.