GaN HEMT 综述:非线性机制和改进方法

IF 4.8 4区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Journal of Semiconductors Pub Date : 2023-12-01 DOI:10.1088/1674-4926/44/12/121801
Chen-Chung Du, Ran Ye, Xiaolong Cai, Xiangyang Duan, Haijun Liu, Yu Zhang, Gang Qiu, Minhan Mi
{"title":"GaN HEMT 综述:非线性机制和改进方法","authors":"Chen-Chung Du, Ran Ye, Xiaolong Cai, Xiangyang Duan, Haijun Liu, Yu Zhang, Gang Qiu, Minhan Mi","doi":"10.1088/1674-4926/44/12/121801","DOIUrl":null,"url":null,"abstract":"The GaN HEMT is a potential candidate for RF applications due to the high frequency and large power handling capability. To ensure the quality of the communication signal, linearity is a key parameter during the system design. However, the GaN HEMT usually suffers from the nonlinearity problems induced by the nonlinear parasitic capacitance, transconductance, channel transconductance etc. Among them, the transconductance reduction is the main contributor for the nonlinearity and is mostly attributed to the scattering effect, the increasing resistance of access region, the self-heating effect and the trapping effects. Based on the mechanisms, device-level improvement methods of transconductance including the trapping suppression, the nanowire channel, the graded channel, the double channel, the transconductance compensation and the new material structures have been proposed recently. The features of each method are reviewed and compared to provide an overview perspective on the linearity of the GaN HEMT at the device level.","PeriodicalId":17038,"journal":{"name":"Journal of Semiconductors","volume":"2 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on GaN HEMTs: nonlinear mechanisms and improvement methods\",\"authors\":\"Chen-Chung Du, Ran Ye, Xiaolong Cai, Xiangyang Duan, Haijun Liu, Yu Zhang, Gang Qiu, Minhan Mi\",\"doi\":\"10.1088/1674-4926/44/12/121801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The GaN HEMT is a potential candidate for RF applications due to the high frequency and large power handling capability. To ensure the quality of the communication signal, linearity is a key parameter during the system design. However, the GaN HEMT usually suffers from the nonlinearity problems induced by the nonlinear parasitic capacitance, transconductance, channel transconductance etc. Among them, the transconductance reduction is the main contributor for the nonlinearity and is mostly attributed to the scattering effect, the increasing resistance of access region, the self-heating effect and the trapping effects. Based on the mechanisms, device-level improvement methods of transconductance including the trapping suppression, the nanowire channel, the graded channel, the double channel, the transconductance compensation and the new material structures have been proposed recently. The features of each method are reviewed and compared to provide an overview perspective on the linearity of the GaN HEMT at the device level.\",\"PeriodicalId\":17038,\"journal\":{\"name\":\"Journal of Semiconductors\",\"volume\":\"2 3\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Semiconductors\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4926/44/12/121801\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Semiconductors","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4926/44/12/121801","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

GaN HEMT 具有高频率和大功率处理能力,是射频应用的潜在候选器件。为确保通信信号的质量,线性度是系统设计中的一个关键参数。然而,GaN HEMT 通常会受到非线性寄生电容、跨电导、沟道跨电导等非线性因素的影响。其中,跨导降低是造成非线性的主要原因,主要归因于散射效应、接入区电阻增加、自热效应和陷波效应。根据这些机理,最近有人提出了器件级的跨导改进方法,包括抑制陷波、纳米线沟道、分级沟道、双沟道、跨导补偿和新材料结构。我们对每种方法的特点进行了回顾和比较,以便从器件层面对 GaN HEMT 的线性度进行全面透视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review on GaN HEMTs: nonlinear mechanisms and improvement methods
The GaN HEMT is a potential candidate for RF applications due to the high frequency and large power handling capability. To ensure the quality of the communication signal, linearity is a key parameter during the system design. However, the GaN HEMT usually suffers from the nonlinearity problems induced by the nonlinear parasitic capacitance, transconductance, channel transconductance etc. Among them, the transconductance reduction is the main contributor for the nonlinearity and is mostly attributed to the scattering effect, the increasing resistance of access region, the self-heating effect and the trapping effects. Based on the mechanisms, device-level improvement methods of transconductance including the trapping suppression, the nanowire channel, the graded channel, the double channel, the transconductance compensation and the new material structures have been proposed recently. The features of each method are reviewed and compared to provide an overview perspective on the linearity of the GaN HEMT at the device level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Semiconductors
Journal of Semiconductors PHYSICS, CONDENSED MATTER-
CiteScore
6.70
自引率
9.80%
发文量
119
期刊介绍: Journal of Semiconductors publishes articles that emphasize semiconductor physics, materials, devices, circuits, and related technology.
期刊最新文献
Effects of gallium surfactant on AlN thin films by microwave plasma chemical vapor deposition Effects of 1 MeV electron radiation on the AlGaN/GaN high electron mobility transistors 10 × 10 Ga2O3-based solar-blind UV detector array and imaging characteristic Multiframe-integrated, in-sensor computing using persistent photoconductivity Localized-states quantum confinement induced by roughness in CdMnTe/CdTe heterostructures grown on Si(111) substrates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1