{"title":"使用 STT-MRAM 的新型时域内存计算单元","authors":"Ankana Saha, Srija Alla, Vinod Kumar Joshi","doi":"10.1016/j.mee.2023.112128","DOIUrl":null,"url":null,"abstract":"<p>Advancements in technologies like Big Data, IoT, and AI have revealed a bottleneck in traditional von-Neumann architecture, resulting in high energy consumption and limited memory bandwidth. In-memory computing (IMC) presents a promising solution by enabling computations directly within the memory, enhancing energy-efficient computing. The existing time-domain (TD)-based IMC computations either require multiple cycles for computation through a successive read/write approach or contribute to the complexity of the peripheral circuit by adopting a cumulative delay approach. In this paper, we present a novel array architecture that utilizes spin transfer torque magnetic random access memory (STT-MRAM) bit-cells, mitigating source degeneration issue. By leveraging this advanced technology and employing a TD computing scheme, we have successfully implemented various arithmetic operations, alongside a comprehensive set of Boolean logic operations. Our design demonstrates improved area and energy efficiency compared to other existing TD computing schemes. Furthermore, despite the higher delay, our parameter-driven optimization approach efficiently minimizes it. To validate our proposal, we performed simulations using the 45 nm CMOS process and the Verilog-A based magnetic tunnel junction (MTJ) compact model. Through meticulous Monte-Carlo simulations, considering CMOS variations, the results demonstrate enhanced computational accuracy with increasing Tunnel Magnetoresistance (TMR) ratio, showcasing the potential of our architecture in advancing the field of computing.</p>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel time-domain in-memory computing unit using STT-MRAM\",\"authors\":\"Ankana Saha, Srija Alla, Vinod Kumar Joshi\",\"doi\":\"10.1016/j.mee.2023.112128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Advancements in technologies like Big Data, IoT, and AI have revealed a bottleneck in traditional von-Neumann architecture, resulting in high energy consumption and limited memory bandwidth. In-memory computing (IMC) presents a promising solution by enabling computations directly within the memory, enhancing energy-efficient computing. The existing time-domain (TD)-based IMC computations either require multiple cycles for computation through a successive read/write approach or contribute to the complexity of the peripheral circuit by adopting a cumulative delay approach. In this paper, we present a novel array architecture that utilizes spin transfer torque magnetic random access memory (STT-MRAM) bit-cells, mitigating source degeneration issue. By leveraging this advanced technology and employing a TD computing scheme, we have successfully implemented various arithmetic operations, alongside a comprehensive set of Boolean logic operations. Our design demonstrates improved area and energy efficiency compared to other existing TD computing schemes. Furthermore, despite the higher delay, our parameter-driven optimization approach efficiently minimizes it. To validate our proposal, we performed simulations using the 45 nm CMOS process and the Verilog-A based magnetic tunnel junction (MTJ) compact model. Through meticulous Monte-Carlo simulations, considering CMOS variations, the results demonstrate enhanced computational accuracy with increasing Tunnel Magnetoresistance (TMR) ratio, showcasing the potential of our architecture in advancing the field of computing.</p>\",\"PeriodicalId\":18557,\"journal\":{\"name\":\"Microelectronic Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mee.2023.112128\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.mee.2023.112128","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A novel time-domain in-memory computing unit using STT-MRAM
Advancements in technologies like Big Data, IoT, and AI have revealed a bottleneck in traditional von-Neumann architecture, resulting in high energy consumption and limited memory bandwidth. In-memory computing (IMC) presents a promising solution by enabling computations directly within the memory, enhancing energy-efficient computing. The existing time-domain (TD)-based IMC computations either require multiple cycles for computation through a successive read/write approach or contribute to the complexity of the peripheral circuit by adopting a cumulative delay approach. In this paper, we present a novel array architecture that utilizes spin transfer torque magnetic random access memory (STT-MRAM) bit-cells, mitigating source degeneration issue. By leveraging this advanced technology and employing a TD computing scheme, we have successfully implemented various arithmetic operations, alongside a comprehensive set of Boolean logic operations. Our design demonstrates improved area and energy efficiency compared to other existing TD computing schemes. Furthermore, despite the higher delay, our parameter-driven optimization approach efficiently minimizes it. To validate our proposal, we performed simulations using the 45 nm CMOS process and the Verilog-A based magnetic tunnel junction (MTJ) compact model. Through meticulous Monte-Carlo simulations, considering CMOS variations, the results demonstrate enhanced computational accuracy with increasing Tunnel Magnetoresistance (TMR) ratio, showcasing the potential of our architecture in advancing the field of computing.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.