Ayoub Rezqaoui, Soufiane Boumlah, Aboubaker El Hessni, Mohamed Yassine El Brouzi, Abdelghafour El Hamzaoui, Laila Ibouzine-Dine, Samir Benkirane, Manal Adnani, Abdelhalem Mesfioui
{"title":"评估褪黑激素对雄性 Wistar 大鼠长期服用铁剂的保护作用:情感、认知和氧化应激与 EDTA 螯合剂的比较分析。","authors":"Ayoub Rezqaoui, Soufiane Boumlah, Aboubaker El Hessni, Mohamed Yassine El Brouzi, Abdelghafour El Hamzaoui, Laila Ibouzine-Dine, Samir Benkirane, Manal Adnani, Abdelhalem Mesfioui","doi":"10.1007/s12011-023-04006-2","DOIUrl":null,"url":null,"abstract":"<p><p>Iron is the dominant metal in the brain and is distributed widely. However, it can lead to various neuropathological and neurobehavioral abnormalities as well as oxidative stress. On the other hand, melatonin, a pineal hormone, is known for its neuroprotective properties, as well as its ability to act as a natural chelator against oxidative stress. It has also been used as an antidepressant and anxiolytic. The study investigated the potential of melatonin and EDTA treatment to prevent anxiety, depressive behavior, and memory impairment in male rats induced by chronic iron administration, and its connection to oxidative stress regulation in the hippocampus and prefrontal cortex. The rats were divided into six groups and intraperitoneally injected for 8 weeks with NaCl solution (control), iron sulfate (1 mg/kg), melatonin (4 mg/kg), EDTA (4 mg/kg), 1 mg/kg of iron + 4 mg/kg of melatonin, or 1 mg/kg of iron + 4 mg/kg of EDTA. In this study, we performed a neurobehavioral assessment and biochemical determinations of oxidative stress levels in the hippocampus and prefrontal cortex of each animal. The results indicate that chronic exposure to iron sulfate induced anxiety-like depressive behavior, and cognitive impairment also increased the levels of lipid peroxidation and nitric oxide, and reduced the activity of catalase in the hippocampus and prefrontal cortex in male Wistar rats, suggesting the induction of oxidative stress. In contrast, these alterations were reversed by melatonin better than EDTA. The results of this study show that melatonin protects against the neurobehavioral changes caused by iron, which may be associated with decreasing oxidative stress in the hippocampus and prefrontal cortex.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Protective Effects of Melatonin Against Chronic Iron Administration in Male Wistar Rats: a Comparative Analysis of Affective, Cognitive, and Oxidative Stress with EDTA Chelator.\",\"authors\":\"Ayoub Rezqaoui, Soufiane Boumlah, Aboubaker El Hessni, Mohamed Yassine El Brouzi, Abdelghafour El Hamzaoui, Laila Ibouzine-Dine, Samir Benkirane, Manal Adnani, Abdelhalem Mesfioui\",\"doi\":\"10.1007/s12011-023-04006-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Iron is the dominant metal in the brain and is distributed widely. However, it can lead to various neuropathological and neurobehavioral abnormalities as well as oxidative stress. On the other hand, melatonin, a pineal hormone, is known for its neuroprotective properties, as well as its ability to act as a natural chelator against oxidative stress. It has also been used as an antidepressant and anxiolytic. The study investigated the potential of melatonin and EDTA treatment to prevent anxiety, depressive behavior, and memory impairment in male rats induced by chronic iron administration, and its connection to oxidative stress regulation in the hippocampus and prefrontal cortex. The rats were divided into six groups and intraperitoneally injected for 8 weeks with NaCl solution (control), iron sulfate (1 mg/kg), melatonin (4 mg/kg), EDTA (4 mg/kg), 1 mg/kg of iron + 4 mg/kg of melatonin, or 1 mg/kg of iron + 4 mg/kg of EDTA. In this study, we performed a neurobehavioral assessment and biochemical determinations of oxidative stress levels in the hippocampus and prefrontal cortex of each animal. The results indicate that chronic exposure to iron sulfate induced anxiety-like depressive behavior, and cognitive impairment also increased the levels of lipid peroxidation and nitric oxide, and reduced the activity of catalase in the hippocampus and prefrontal cortex in male Wistar rats, suggesting the induction of oxidative stress. In contrast, these alterations were reversed by melatonin better than EDTA. The results of this study show that melatonin protects against the neurobehavioral changes caused by iron, which may be associated with decreasing oxidative stress in the hippocampus and prefrontal cortex.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12011-023-04006-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-023-04006-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Evaluating the Protective Effects of Melatonin Against Chronic Iron Administration in Male Wistar Rats: a Comparative Analysis of Affective, Cognitive, and Oxidative Stress with EDTA Chelator.
Iron is the dominant metal in the brain and is distributed widely. However, it can lead to various neuropathological and neurobehavioral abnormalities as well as oxidative stress. On the other hand, melatonin, a pineal hormone, is known for its neuroprotective properties, as well as its ability to act as a natural chelator against oxidative stress. It has also been used as an antidepressant and anxiolytic. The study investigated the potential of melatonin and EDTA treatment to prevent anxiety, depressive behavior, and memory impairment in male rats induced by chronic iron administration, and its connection to oxidative stress regulation in the hippocampus and prefrontal cortex. The rats were divided into six groups and intraperitoneally injected for 8 weeks with NaCl solution (control), iron sulfate (1 mg/kg), melatonin (4 mg/kg), EDTA (4 mg/kg), 1 mg/kg of iron + 4 mg/kg of melatonin, or 1 mg/kg of iron + 4 mg/kg of EDTA. In this study, we performed a neurobehavioral assessment and biochemical determinations of oxidative stress levels in the hippocampus and prefrontal cortex of each animal. The results indicate that chronic exposure to iron sulfate induced anxiety-like depressive behavior, and cognitive impairment also increased the levels of lipid peroxidation and nitric oxide, and reduced the activity of catalase in the hippocampus and prefrontal cortex in male Wistar rats, suggesting the induction of oxidative stress. In contrast, these alterations were reversed by melatonin better than EDTA. The results of this study show that melatonin protects against the neurobehavioral changes caused by iron, which may be associated with decreasing oxidative stress in the hippocampus and prefrontal cortex.