小麦植物的光合作用和电反应在舒曼共振频率带磁场作用下的反应。

Plant signaling & behavior Pub Date : 2024-12-31 Epub Date: 2023-12-26 DOI:10.1080/15592324.2023.2294425
Marina Grinberg, Nikolay Ilin, Yulia Nemtsova, Fedor Sarafanov, Angelina Ivanova, Alexey Dolinin, Polina Pirogova, Vladimir Vodeneev, Evgeny Mareev
{"title":"小麦植物的光合作用和电反应在舒曼共振频率带磁场作用下的反应。","authors":"Marina Grinberg, Nikolay Ilin, Yulia Nemtsova, Fedor Sarafanov, Angelina Ivanova, Alexey Dolinin, Polina Pirogova, Vladimir Vodeneev, Evgeny Mareev","doi":"10.1080/15592324.2023.2294425","DOIUrl":null,"url":null,"abstract":"<p><p>Alternating magnetic fields (MF) with Schumann resonance frequencies accompanied the development of living organisms throughout evolution, but today it remains unclear whether they can have a special biological effect in comparison with surrounding non-resonant frequencies. This work shows some stimulating effect of extremely low-frequency MFs on morphometric parameters and the activity of physiological processes in wheat (<i>Triticum aestivum</i> L.). It is shown that the MF effect is more pronounced for transient processes - photosynthesis reactions and changes in electrical potential caused by turning on light. For light-induced electrical reactions, the dependence of the severity of the effect on the frequency of the applied MF was demonstrated. It is shown that the most pronounced effect occurs in the 14.3 Hz field, which corresponds to the second harmonic of the Schumann resonance. The predominant sensitivity of signal-regulatory systems gives reason to assume the influence of MFs with Schumann resonance frequencies on the interaction of plants with environmental factors under conditions of a changed electromagnetic environment. Such conditions can occur, for example, with an increase in lightning activity caused by climate change, which serves as the basis for the generation of Schumann resonances, and with the development of artificial ecosystems outside the Earth's atmosphere.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761032/pdf/","citationCount":"0","resultStr":"{\"title\":\"Response of photosynthesis and electrical reactions of wheat plants upon the action of magnetic fields in the Schumann resonance frequency band.\",\"authors\":\"Marina Grinberg, Nikolay Ilin, Yulia Nemtsova, Fedor Sarafanov, Angelina Ivanova, Alexey Dolinin, Polina Pirogova, Vladimir Vodeneev, Evgeny Mareev\",\"doi\":\"10.1080/15592324.2023.2294425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alternating magnetic fields (MF) with Schumann resonance frequencies accompanied the development of living organisms throughout evolution, but today it remains unclear whether they can have a special biological effect in comparison with surrounding non-resonant frequencies. This work shows some stimulating effect of extremely low-frequency MFs on morphometric parameters and the activity of physiological processes in wheat (<i>Triticum aestivum</i> L.). It is shown that the MF effect is more pronounced for transient processes - photosynthesis reactions and changes in electrical potential caused by turning on light. For light-induced electrical reactions, the dependence of the severity of the effect on the frequency of the applied MF was demonstrated. It is shown that the most pronounced effect occurs in the 14.3 Hz field, which corresponds to the second harmonic of the Schumann resonance. The predominant sensitivity of signal-regulatory systems gives reason to assume the influence of MFs with Schumann resonance frequencies on the interaction of plants with environmental factors under conditions of a changed electromagnetic environment. Such conditions can occur, for example, with an increase in lightning activity caused by climate change, which serves as the basis for the generation of Schumann resonances, and with the development of artificial ecosystems outside the Earth's atmosphere.</p>\",\"PeriodicalId\":94172,\"journal\":{\"name\":\"Plant signaling & behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761032/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant signaling & behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15592324.2023.2294425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2023.2294425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有舒曼共振频率的交变磁场(MF)伴随着生物的整个进化过程,但与周围的非共振频率相比,交变磁场是否具有特殊的生物效应,目前仍不清楚。这项工作显示了极低频中频对小麦(Triticum aestivum L.)形态参数和生理过程活动的一些刺激作用。研究表明,中频对瞬时过程--光合作用反应和光照引起的电势变化--的影响更为明显。对于光引起的电反应,效果的严重程度取决于施加中频的频率。结果表明,最明显的影响发生在 14.3 赫兹的磁场中,相当于舒曼共振的二次谐波。信号调节系统的主要敏感性使我们有理由认为,在电磁环境变化的条件下,具有舒曼共振频率的中频会影响植物与环境因素的相互作用。例如,气候变化导致雷电活动增加(这是产生舒曼共振的基础),以及地球大气层外人工生态系统的发展,都可能出现这种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Response of photosynthesis and electrical reactions of wheat plants upon the action of magnetic fields in the Schumann resonance frequency band.

Alternating magnetic fields (MF) with Schumann resonance frequencies accompanied the development of living organisms throughout evolution, but today it remains unclear whether they can have a special biological effect in comparison with surrounding non-resonant frequencies. This work shows some stimulating effect of extremely low-frequency MFs on morphometric parameters and the activity of physiological processes in wheat (Triticum aestivum L.). It is shown that the MF effect is more pronounced for transient processes - photosynthesis reactions and changes in electrical potential caused by turning on light. For light-induced electrical reactions, the dependence of the severity of the effect on the frequency of the applied MF was demonstrated. It is shown that the most pronounced effect occurs in the 14.3 Hz field, which corresponds to the second harmonic of the Schumann resonance. The predominant sensitivity of signal-regulatory systems gives reason to assume the influence of MFs with Schumann resonance frequencies on the interaction of plants with environmental factors under conditions of a changed electromagnetic environment. Such conditions can occur, for example, with an increase in lightning activity caused by climate change, which serves as the basis for the generation of Schumann resonances, and with the development of artificial ecosystems outside the Earth's atmosphere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Response of photosynthesis and electrical reactions of wheat plants upon the action of magnetic fields in the Schumann resonance frequency band. Reciprocal modulation of responses to nitrate starvation and hypoxia in roots and leaves of Arabidopsis thaliana. Cold priming on pathogen susceptibility in the Arabidopsis eds1 mutant background requires a functional stromal Ascorbate Peroxidase. Editorial: plant-microbial symbiosis toward sustainable food security. Nitric oxide in plants: an insight on redox activity and responses toward abiotic stress signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1