垂直排列的中空介孔二氧化硅棒为锂金属电池提供具有快速离子传导能力的复合聚合物电解质

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2023-12-28 DOI:10.1002/adfm.202311952
Tingzhi Deng, Qiwei Han, Jian Liu, Chaolong Yang, Jing Wang, Mingxi Wang, Zhipeng Wang, Binghua Zhou
{"title":"垂直排列的中空介孔二氧化硅棒为锂金属电池提供具有快速离子传导能力的复合聚合物电解质","authors":"Tingzhi Deng,&nbsp;Qiwei Han,&nbsp;Jian Liu,&nbsp;Chaolong Yang,&nbsp;Jing Wang,&nbsp;Mingxi Wang,&nbsp;Zhipeng Wang,&nbsp;Binghua Zhou","doi":"10.1002/adfm.202311952","DOIUrl":null,"url":null,"abstract":"<p>Incorporation of inorganic fillers into polymer matrices to design composite polymer electrolytes is considered as a promising strategy for high performance lithium metal batteries. However, the randomly dispersed fillers in the polymer matrices can cause tortuous ionic channels and increase the transport distance, resulting in the decrease of ion transport capacity. Herein, composite polymer electrolytes with vertically aligned channels are fabricated under the assistance of a magnetic field during the UV-induced polymerization. The vertically aligned rods are formed through controlling the direction of the magnetic field. The construction of the aligned ionic pathways can effectively reduce the transport distance of Li ions in the electrolytes, while the hollow mesoporous silica rods can provide space for absorbing electrolyte, consequently enhancing the electrochemical kinetics. The aligned interfaces provide Lewis acid sites for trapping the anions of Li salt to facilitate the enhancement of Li ion transference number. More significantly, the Li/Li symmetrical cells based on the composite electrolyte exhibit a stable voltage plateau over 1500 h due to the uniform distribution of Li-ion flux in the unique low-tortuosity structure, and the assembled LiFePO<sub>4</sub>/Li cells show outstanding rate capability and cycling stability.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertically Aligned Hollow Mesoporous Silica Rods Enabling Composite Polymer Electrolytes with Fast Ionic Conduction for Lithium Metal Batteries\",\"authors\":\"Tingzhi Deng,&nbsp;Qiwei Han,&nbsp;Jian Liu,&nbsp;Chaolong Yang,&nbsp;Jing Wang,&nbsp;Mingxi Wang,&nbsp;Zhipeng Wang,&nbsp;Binghua Zhou\",\"doi\":\"10.1002/adfm.202311952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Incorporation of inorganic fillers into polymer matrices to design composite polymer electrolytes is considered as a promising strategy for high performance lithium metal batteries. However, the randomly dispersed fillers in the polymer matrices can cause tortuous ionic channels and increase the transport distance, resulting in the decrease of ion transport capacity. Herein, composite polymer electrolytes with vertically aligned channels are fabricated under the assistance of a magnetic field during the UV-induced polymerization. The vertically aligned rods are formed through controlling the direction of the magnetic field. The construction of the aligned ionic pathways can effectively reduce the transport distance of Li ions in the electrolytes, while the hollow mesoporous silica rods can provide space for absorbing electrolyte, consequently enhancing the electrochemical kinetics. The aligned interfaces provide Lewis acid sites for trapping the anions of Li salt to facilitate the enhancement of Li ion transference number. More significantly, the Li/Li symmetrical cells based on the composite electrolyte exhibit a stable voltage plateau over 1500 h due to the uniform distribution of Li-ion flux in the unique low-tortuosity structure, and the assembled LiFePO<sub>4</sub>/Li cells show outstanding rate capability and cycling stability.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202311952\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202311952","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在聚合物基质中加入无机填料以设计复合聚合物电解质,被认为是实现高性能锂金属电池的一种有前途的策略。然而,聚合物基质中随机分散的填料会导致离子通道迂回曲折,增加传输距离,从而降低离子传输能力。在此,我们在紫外诱导聚合过程中,在磁场的辅助下制造出了具有垂直排列通道的复合聚合物电解质。通过控制磁场方向可形成垂直排列的棒。排列离子通道的构建可有效缩短锂离子在电解质中的传输距离,而中空介孔二氧化硅棒可提供吸收电解质的空间,从而提高电化学动力学。排列整齐的界面为捕获锂盐阴离子提供了路易斯酸位点,有助于提高锂离子的转移数量。更重要的是,由于锂离子通量在独特的低迂回结构中分布均匀,基于复合电解质的锂/锂对称电池在 1500 小时内表现出稳定的电压平台,组装后的 LiFePO4/Li 电池表现出卓越的速率能力和循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vertically Aligned Hollow Mesoporous Silica Rods Enabling Composite Polymer Electrolytes with Fast Ionic Conduction for Lithium Metal Batteries

Incorporation of inorganic fillers into polymer matrices to design composite polymer electrolytes is considered as a promising strategy for high performance lithium metal batteries. However, the randomly dispersed fillers in the polymer matrices can cause tortuous ionic channels and increase the transport distance, resulting in the decrease of ion transport capacity. Herein, composite polymer electrolytes with vertically aligned channels are fabricated under the assistance of a magnetic field during the UV-induced polymerization. The vertically aligned rods are formed through controlling the direction of the magnetic field. The construction of the aligned ionic pathways can effectively reduce the transport distance of Li ions in the electrolytes, while the hollow mesoporous silica rods can provide space for absorbing electrolyte, consequently enhancing the electrochemical kinetics. The aligned interfaces provide Lewis acid sites for trapping the anions of Li salt to facilitate the enhancement of Li ion transference number. More significantly, the Li/Li symmetrical cells based on the composite electrolyte exhibit a stable voltage plateau over 1500 h due to the uniform distribution of Li-ion flux in the unique low-tortuosity structure, and the assembled LiFePO4/Li cells show outstanding rate capability and cycling stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Enhanced Ferritin-Manganese Interaction by Nanoplatinum Growth Enabling Liver Fibrosis 3D Magnetic Resonance Visualization and Synergistic Therapy with Real-Time Monitoring Simultaneously Improving Radiative Decay and Reverse Intersystem Crossing in Space-Confined Through-Space Charge-Transfer (TSCT) Emitter by Strong Intermolecular TSCT Enabled by a Planar Donor Bi2O3 Nanosheets for Early Warning Thermal Runaway of Lithium Battery Electron-Deficient Engineering in Large-Conjugate-Heptazine Framework to Effectively Shuttle Hot Electrons for Efficient Photocatalytic H2O2 Production Achieving Unipolar Organic Transistors for Complementary Circuits by Selective Usage of Doped Organic Semiconductor Film Electrodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1