Andrés González-Melo, Juan Manuel Posada, Jacques Beauchêne, Romain Lehnebach, Sébastian Levionnois, Géraldine Derroire, Bruno Clair
{"title":"低地热带雨林树木生长过程中木质特征与物种分布之间的联系变化","authors":"Andrés González-Melo, Juan Manuel Posada, Jacques Beauchêne, Romain Lehnebach, Sébastian Levionnois, Géraldine Derroire, Bruno Clair","doi":"10.1093/aobpla/plad090","DOIUrl":null,"url":null,"abstract":"One foundational assumption of trait-based ecology is that traits can predict species demography. However, the links between traits and demographic rates are, in general, not as strong as expected. These weak associations may be due to the use of traits that are distantly related to performance, and/or the lack of consideration of size-related variations in both traits and demographic rates. Here, we examined how wood traits were related to demographic rates in 19 tree species from a lowland forest in eastern Amazonia. We measured eleven wood traits (i.e., structural, anatomical and chemical traits) in sapling, juvenile and adult wood; and related them to growth and mortality rates at different ontogenetic stages. The links between wood traits and demographic rates changed during tree development. At the sapling stage, relative growth rates (RGR) were negatively related to wood specific gravity (WSG) and total parenchyma fractions, while mortality rates (MR) decreased with radial parenchyma fractions, but increased with vessel lumen area (VA). Juvenile RGR were unrelated to wood traits, whereas juvenile MR were negatively related to WSG and axial parenchyma fractions. At the adult stage, RGR scaled with VA and wood potassium concentrations. Adult MR were not predicted by any trait. Overall, the strength of the trait-demography associations decreased at later ontogenetic stages. Our results indicate that the associations between traits and demographic rates can change as trees age. Also, wood chemical or anatomical traits may be better predictors of growth and mortality rates than WSG. Our findings are important to expand our knowledge on tree life-history variations and community dynamics in tropical forests, by broadening our understanding on the links between wood traits and demography during tree development.","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"30 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The links between wood traits and species demography change during tree development in a lowland tropical rainforest\",\"authors\":\"Andrés González-Melo, Juan Manuel Posada, Jacques Beauchêne, Romain Lehnebach, Sébastian Levionnois, Géraldine Derroire, Bruno Clair\",\"doi\":\"10.1093/aobpla/plad090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One foundational assumption of trait-based ecology is that traits can predict species demography. However, the links between traits and demographic rates are, in general, not as strong as expected. These weak associations may be due to the use of traits that are distantly related to performance, and/or the lack of consideration of size-related variations in both traits and demographic rates. Here, we examined how wood traits were related to demographic rates in 19 tree species from a lowland forest in eastern Amazonia. We measured eleven wood traits (i.e., structural, anatomical and chemical traits) in sapling, juvenile and adult wood; and related them to growth and mortality rates at different ontogenetic stages. The links between wood traits and demographic rates changed during tree development. At the sapling stage, relative growth rates (RGR) were negatively related to wood specific gravity (WSG) and total parenchyma fractions, while mortality rates (MR) decreased with radial parenchyma fractions, but increased with vessel lumen area (VA). Juvenile RGR were unrelated to wood traits, whereas juvenile MR were negatively related to WSG and axial parenchyma fractions. At the adult stage, RGR scaled with VA and wood potassium concentrations. Adult MR were not predicted by any trait. Overall, the strength of the trait-demography associations decreased at later ontogenetic stages. Our results indicate that the associations between traits and demographic rates can change as trees age. Also, wood chemical or anatomical traits may be better predictors of growth and mortality rates than WSG. Our findings are important to expand our knowledge on tree life-history variations and community dynamics in tropical forests, by broadening our understanding on the links between wood traits and demography during tree development.\",\"PeriodicalId\":48955,\"journal\":{\"name\":\"AoB Plants\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AoB Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aobpla/plad090\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AoB Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aobpla/plad090","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
The links between wood traits and species demography change during tree development in a lowland tropical rainforest
One foundational assumption of trait-based ecology is that traits can predict species demography. However, the links between traits and demographic rates are, in general, not as strong as expected. These weak associations may be due to the use of traits that are distantly related to performance, and/or the lack of consideration of size-related variations in both traits and demographic rates. Here, we examined how wood traits were related to demographic rates in 19 tree species from a lowland forest in eastern Amazonia. We measured eleven wood traits (i.e., structural, anatomical and chemical traits) in sapling, juvenile and adult wood; and related them to growth and mortality rates at different ontogenetic stages. The links between wood traits and demographic rates changed during tree development. At the sapling stage, relative growth rates (RGR) were negatively related to wood specific gravity (WSG) and total parenchyma fractions, while mortality rates (MR) decreased with radial parenchyma fractions, but increased with vessel lumen area (VA). Juvenile RGR were unrelated to wood traits, whereas juvenile MR were negatively related to WSG and axial parenchyma fractions. At the adult stage, RGR scaled with VA and wood potassium concentrations. Adult MR were not predicted by any trait. Overall, the strength of the trait-demography associations decreased at later ontogenetic stages. Our results indicate that the associations between traits and demographic rates can change as trees age. Also, wood chemical or anatomical traits may be better predictors of growth and mortality rates than WSG. Our findings are important to expand our knowledge on tree life-history variations and community dynamics in tropical forests, by broadening our understanding on the links between wood traits and demography during tree development.
期刊介绍:
AoB PLANTS is an open-access, online journal that has been publishing peer-reviewed articles since 2010, with an emphasis on all aspects of environmental and evolutionary plant biology. Published by Oxford University Press, this journal is dedicated to rapid publication of research articles, reviews, commentaries and short communications. The taxonomic scope of the journal spans the full gamut of vascular and non-vascular plants, as well as other taxa that impact these organisms. AoB PLANTS provides a fast-track pathway for publishing high-quality research in an open-access environment, where papers are available online to anyone, anywhere free of charge.