基于协同过滤算法的城市轨道交通乘客个性化路线推荐

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IET Intelligent Transport Systems Pub Date : 2023-12-26 DOI:10.1049/itr2.12476
Wei Li, Zhiyuan Li, Qin Luo
{"title":"基于协同过滤算法的城市轨道交通乘客个性化路线推荐","authors":"Wei Li,&nbsp;Zhiyuan Li,&nbsp;Qin Luo","doi":"10.1049/itr2.12476","DOIUrl":null,"url":null,"abstract":"<p>The rapid advancements in information technology and intelligent systems within urban rail transit (URT) systems have highlighted the need for more personalized route recommendations that consider passengers’ travel habits. This study aims to address this issue by investigating passenger travel routes alongside other passengers who share similar travel preferences, utilizing collaborative filtering (CF) techniques. The approach involves analyzing historical card data to assess passenger travel profiles, including actual travel time under crowded conditions. By considering both individual passenger preferences and the preferences of similar passengers, a CF algorithm is employed to offer personalized route recommendations. The Shenzhen metro is used as a case study to illustrate the proposed method. The results demonstrate that the proposed approach surpasses traditional route recommendation methods by providing tailored suggestions that align more closely with passengers’ travel preferences. These findings emphasize the value of incorporating passenger travel preferences into route recommendation models, thereby enhancing the accuracy and effectiveness of personalized route recommendations within URT systems.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12476","citationCount":"0","resultStr":"{\"title\":\"Personalized route recommendation for passengers in urban rail transit based on collaborative filtering algorithm\",\"authors\":\"Wei Li,&nbsp;Zhiyuan Li,&nbsp;Qin Luo\",\"doi\":\"10.1049/itr2.12476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid advancements in information technology and intelligent systems within urban rail transit (URT) systems have highlighted the need for more personalized route recommendations that consider passengers’ travel habits. This study aims to address this issue by investigating passenger travel routes alongside other passengers who share similar travel preferences, utilizing collaborative filtering (CF) techniques. The approach involves analyzing historical card data to assess passenger travel profiles, including actual travel time under crowded conditions. By considering both individual passenger preferences and the preferences of similar passengers, a CF algorithm is employed to offer personalized route recommendations. The Shenzhen metro is used as a case study to illustrate the proposed method. The results demonstrate that the proposed approach surpasses traditional route recommendation methods by providing tailored suggestions that align more closely with passengers’ travel preferences. These findings emphasize the value of incorporating passenger travel preferences into route recommendation models, thereby enhancing the accuracy and effectiveness of personalized route recommendations within URT systems.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12476\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12476\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12476","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

城市轨道交通(URT)系统中信息技术和智能系统的快速发展凸显了对考虑乘客出行习惯的个性化路线推荐的需求。本研究旨在利用协同过滤(CF)技术,与其他具有相似出行偏好的乘客一起调查乘客的出行路线,从而解决这一问题。该方法涉及分析历史乘车卡数据,以评估乘客的旅行情况,包括拥挤情况下的实际旅行时间。通过考虑乘客的个人偏好和相似乘客的偏好,CF 算法可提供个性化的路线推荐。本文以深圳地铁为例,对所提出的方法进行了说明。结果表明,所提出的方法超越了传统的路线推荐方法,能提供更符合乘客出行偏好的定制建议。这些发现强调了将乘客出行偏好纳入路线推荐模型的价值,从而提高了城市轨道交通系统中个性化路线推荐的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Personalized route recommendation for passengers in urban rail transit based on collaborative filtering algorithm

The rapid advancements in information technology and intelligent systems within urban rail transit (URT) systems have highlighted the need for more personalized route recommendations that consider passengers’ travel habits. This study aims to address this issue by investigating passenger travel routes alongside other passengers who share similar travel preferences, utilizing collaborative filtering (CF) techniques. The approach involves analyzing historical card data to assess passenger travel profiles, including actual travel time under crowded conditions. By considering both individual passenger preferences and the preferences of similar passengers, a CF algorithm is employed to offer personalized route recommendations. The Shenzhen metro is used as a case study to illustrate the proposed method. The results demonstrate that the proposed approach surpasses traditional route recommendation methods by providing tailored suggestions that align more closely with passengers’ travel preferences. These findings emphasize the value of incorporating passenger travel preferences into route recommendation models, thereby enhancing the accuracy and effectiveness of personalized route recommendations within URT systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
期刊最新文献
Exploring changes in residents' daily activity patterns through sequence visualization analysis ADWNet: An improved detector based on YOLOv8 for application in adverse weather for autonomous driving Creep slope estimation for assessing adhesion in the wheel/rail contact Evaluation of large-scale cycling environment by using the trajectory data of dockless shared bicycles: A data-driven approach Driver distraction and fatigue detection in images using ME-YOLOv8 algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1