{"title":"基于协同过滤算法的城市轨道交通乘客个性化路线推荐","authors":"Wei Li, Zhiyuan Li, Qin Luo","doi":"10.1049/itr2.12476","DOIUrl":null,"url":null,"abstract":"<p>The rapid advancements in information technology and intelligent systems within urban rail transit (URT) systems have highlighted the need for more personalized route recommendations that consider passengers’ travel habits. This study aims to address this issue by investigating passenger travel routes alongside other passengers who share similar travel preferences, utilizing collaborative filtering (CF) techniques. The approach involves analyzing historical card data to assess passenger travel profiles, including actual travel time under crowded conditions. By considering both individual passenger preferences and the preferences of similar passengers, a CF algorithm is employed to offer personalized route recommendations. The Shenzhen metro is used as a case study to illustrate the proposed method. The results demonstrate that the proposed approach surpasses traditional route recommendation methods by providing tailored suggestions that align more closely with passengers’ travel preferences. These findings emphasize the value of incorporating passenger travel preferences into route recommendation models, thereby enhancing the accuracy and effectiveness of personalized route recommendations within URT systems.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12476","citationCount":"0","resultStr":"{\"title\":\"Personalized route recommendation for passengers in urban rail transit based on collaborative filtering algorithm\",\"authors\":\"Wei Li, Zhiyuan Li, Qin Luo\",\"doi\":\"10.1049/itr2.12476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid advancements in information technology and intelligent systems within urban rail transit (URT) systems have highlighted the need for more personalized route recommendations that consider passengers’ travel habits. This study aims to address this issue by investigating passenger travel routes alongside other passengers who share similar travel preferences, utilizing collaborative filtering (CF) techniques. The approach involves analyzing historical card data to assess passenger travel profiles, including actual travel time under crowded conditions. By considering both individual passenger preferences and the preferences of similar passengers, a CF algorithm is employed to offer personalized route recommendations. The Shenzhen metro is used as a case study to illustrate the proposed method. The results demonstrate that the proposed approach surpasses traditional route recommendation methods by providing tailored suggestions that align more closely with passengers’ travel preferences. These findings emphasize the value of incorporating passenger travel preferences into route recommendation models, thereby enhancing the accuracy and effectiveness of personalized route recommendations within URT systems.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12476\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12476\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12476","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Personalized route recommendation for passengers in urban rail transit based on collaborative filtering algorithm
The rapid advancements in information technology and intelligent systems within urban rail transit (URT) systems have highlighted the need for more personalized route recommendations that consider passengers’ travel habits. This study aims to address this issue by investigating passenger travel routes alongside other passengers who share similar travel preferences, utilizing collaborative filtering (CF) techniques. The approach involves analyzing historical card data to assess passenger travel profiles, including actual travel time under crowded conditions. By considering both individual passenger preferences and the preferences of similar passengers, a CF algorithm is employed to offer personalized route recommendations. The Shenzhen metro is used as a case study to illustrate the proposed method. The results demonstrate that the proposed approach surpasses traditional route recommendation methods by providing tailored suggestions that align more closely with passengers’ travel preferences. These findings emphasize the value of incorporating passenger travel preferences into route recommendation models, thereby enhancing the accuracy and effectiveness of personalized route recommendations within URT systems.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf