{"title":"作为 L 型钙通道阻滞剂的二氢吡啶类分子的设计、硅学筛选、合成、表征和基于 DFT 的电子特性","authors":"Sujoy Karmakar, Hriday Kumar Basak, Uttam Paswan, Soumen Saha, Samir Kumar Mandal, Abhik Chatterjee","doi":"10.2174/0115734099273719231005062524","DOIUrl":null,"url":null,"abstract":"Objective: The objectives of this study are first to design potential antihypertensive drugs based on the DHP scaffold, secondly, to analyse drug-likeness properties of the ligands and investigate their molecular mechanisms of binding to the model protein Cav1.2 and finally to synthesise the best ligand. Methods: Due to the lack of 3D structures for human Cav1.2, the protein structure was modelled using a homology modelling approach. A protein-ligand complex's strength and binding interaction were investigated using molecular docking and molecular dynamics techniques. DFT-based electronic properties of the ligands were calculated using the M06-2X/ def2-TZVP level of theory. The SwissADME website was used to study the ADMET properties. Results: In this study, a series of DHP compounds (19 compounds) were properly designed to act as calcium channel blockers. Among these compounds, compound 16 showed excellent binding scores (-11.6 kcal/mol). This compound was synthesised with good yield and characterised. To assess the structural features of the synthesised molecule quantum chemical calculations were performed. Conclusion: Based on molecular docking, molecular dynamics simulations, and drug-likeness properties of compound 16 can be used as a potential calcium channel blocker.","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":"20 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, In Silico Screening, Synthesis, Characterisation and DFT-based Electronic Properties of Dihydropyridine-based Molecule as L-type Calcium Channel Blocker\",\"authors\":\"Sujoy Karmakar, Hriday Kumar Basak, Uttam Paswan, Soumen Saha, Samir Kumar Mandal, Abhik Chatterjee\",\"doi\":\"10.2174/0115734099273719231005062524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: The objectives of this study are first to design potential antihypertensive drugs based on the DHP scaffold, secondly, to analyse drug-likeness properties of the ligands and investigate their molecular mechanisms of binding to the model protein Cav1.2 and finally to synthesise the best ligand. Methods: Due to the lack of 3D structures for human Cav1.2, the protein structure was modelled using a homology modelling approach. A protein-ligand complex's strength and binding interaction were investigated using molecular docking and molecular dynamics techniques. DFT-based electronic properties of the ligands were calculated using the M06-2X/ def2-TZVP level of theory. The SwissADME website was used to study the ADMET properties. Results: In this study, a series of DHP compounds (19 compounds) were properly designed to act as calcium channel blockers. Among these compounds, compound 16 showed excellent binding scores (-11.6 kcal/mol). This compound was synthesised with good yield and characterised. To assess the structural features of the synthesised molecule quantum chemical calculations were performed. Conclusion: Based on molecular docking, molecular dynamics simulations, and drug-likeness properties of compound 16 can be used as a potential calcium channel blocker.\",\"PeriodicalId\":10886,\"journal\":{\"name\":\"Current computer-aided drug design\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current computer-aided drug design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734099273719231005062524\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734099273719231005062524","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Design, In Silico Screening, Synthesis, Characterisation and DFT-based Electronic Properties of Dihydropyridine-based Molecule as L-type Calcium Channel Blocker
Objective: The objectives of this study are first to design potential antihypertensive drugs based on the DHP scaffold, secondly, to analyse drug-likeness properties of the ligands and investigate their molecular mechanisms of binding to the model protein Cav1.2 and finally to synthesise the best ligand. Methods: Due to the lack of 3D structures for human Cav1.2, the protein structure was modelled using a homology modelling approach. A protein-ligand complex's strength and binding interaction were investigated using molecular docking and molecular dynamics techniques. DFT-based electronic properties of the ligands were calculated using the M06-2X/ def2-TZVP level of theory. The SwissADME website was used to study the ADMET properties. Results: In this study, a series of DHP compounds (19 compounds) were properly designed to act as calcium channel blockers. Among these compounds, compound 16 showed excellent binding scores (-11.6 kcal/mol). This compound was synthesised with good yield and characterised. To assess the structural features of the synthesised molecule quantum chemical calculations were performed. Conclusion: Based on molecular docking, molecular dynamics simulations, and drug-likeness properties of compound 16 can be used as a potential calcium channel blocker.
期刊介绍:
Aims & Scope
Current Computer-Aided Drug Design aims to publish all the latest developments in drug design based on computational techniques. The field of computer-aided drug design has had extensive impact in the area of drug design.
Current Computer-Aided Drug Design is an essential journal for all medicinal chemists who wish to be kept informed and up-to-date with all the latest and important developments in computer-aided methodologies and their applications in drug discovery. Each issue contains a series of timely, in-depth reviews, original research articles and letter articles written by leaders in the field, covering a range of computational techniques for drug design, screening, ADME studies, theoretical chemistry; computational chemistry; computer and molecular graphics; molecular modeling; protein engineering; drug design; expert systems; general structure-property relationships; molecular dynamics; chemical database development and usage etc., providing excellent rationales for drug development.