{"title":"玻璃纤维隔热材料的有效导热率","authors":"Manoj K. Choudhary, Walter Eastes","doi":"10.1111/ijag.16652","DOIUrl":null,"url":null,"abstract":"<p>Globally, the operational energy usage in buildings accounts for about 30% of the final energy consumption and 26% of the energy-related emissions. In 2022, the building sector recorded 132 EJ in energy usage and 9.8 Gt of CO<sub>2</sub> emissions. Energy-intensive space heating and air conditioning play a significant role in these statistics, with slightly over half of US home energy usage attributed to them. Thus, energy-efficient buildings, incorporating effective thermal insulation, are essential for addressing climate change. Fiberglass is the dominant insulation material used in US homes, comprising about 71% of installations. The paper discusses the fundamental aspects of heat transfer in fibrous insulation in general and fiberglass insulation in particular. The thermal performance of a fibrous insulation is characterized by an effective thermal conductivity, which combines conductive and radiative terms. The former represents heat conduction through the gas–fiber network and the latter the absorption and the scattering of thermal radiation by the fibers. The paper describes mathematical formulations for these terms and presents results showing the dependence of the effective conductivity on insulation density, fiber diameter, and temperature. The predicted values of the effective conductivity are found to be in good agreement with the measured ones.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"15 3","pages":"307-316"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective thermal conductivity of fiberglass insulation\",\"authors\":\"Manoj K. Choudhary, Walter Eastes\",\"doi\":\"10.1111/ijag.16652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Globally, the operational energy usage in buildings accounts for about 30% of the final energy consumption and 26% of the energy-related emissions. In 2022, the building sector recorded 132 EJ in energy usage and 9.8 Gt of CO<sub>2</sub> emissions. Energy-intensive space heating and air conditioning play a significant role in these statistics, with slightly over half of US home energy usage attributed to them. Thus, energy-efficient buildings, incorporating effective thermal insulation, are essential for addressing climate change. Fiberglass is the dominant insulation material used in US homes, comprising about 71% of installations. The paper discusses the fundamental aspects of heat transfer in fibrous insulation in general and fiberglass insulation in particular. The thermal performance of a fibrous insulation is characterized by an effective thermal conductivity, which combines conductive and radiative terms. The former represents heat conduction through the gas–fiber network and the latter the absorption and the scattering of thermal radiation by the fibers. The paper describes mathematical formulations for these terms and presents results showing the dependence of the effective conductivity on insulation density, fiber diameter, and temperature. The predicted values of the effective conductivity are found to be in good agreement with the measured ones.</p>\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":\"15 3\",\"pages\":\"307-316\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16652\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16652","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Effective thermal conductivity of fiberglass insulation
Globally, the operational energy usage in buildings accounts for about 30% of the final energy consumption and 26% of the energy-related emissions. In 2022, the building sector recorded 132 EJ in energy usage and 9.8 Gt of CO2 emissions. Energy-intensive space heating and air conditioning play a significant role in these statistics, with slightly over half of US home energy usage attributed to them. Thus, energy-efficient buildings, incorporating effective thermal insulation, are essential for addressing climate change. Fiberglass is the dominant insulation material used in US homes, comprising about 71% of installations. The paper discusses the fundamental aspects of heat transfer in fibrous insulation in general and fiberglass insulation in particular. The thermal performance of a fibrous insulation is characterized by an effective thermal conductivity, which combines conductive and radiative terms. The former represents heat conduction through the gas–fiber network and the latter the absorption and the scattering of thermal radiation by the fibers. The paper describes mathematical formulations for these terms and presents results showing the dependence of the effective conductivity on insulation density, fiber diameter, and temperature. The predicted values of the effective conductivity are found to be in good agreement with the measured ones.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.