Yanping Zhu, Yang Zhang, Xinzhe Yuan, Changgui Hou
{"title":"挠性钢筋超高性能混凝土梁的自适应裂缝宽度预测","authors":"Yanping Zhu, Yang Zhang, Xinzhe Yuan, Changgui Hou","doi":"10.1186/s40069-023-00628-x","DOIUrl":null,"url":null,"abstract":"<p>The crack pattern of steel reinforced ultrahigh performance concrete (UHPC) beam is usually characterized by many densely distributed fine cracks (i.e., multiple microcracks) along with localized macrocrack, and the crack width development rate along the beam height is smaller than that of normal concrete since steel fibers and steel reinforcement bars are supposed to be effective in controlling crack width propagation of the UHPC beam. However, an effective crack width prediction formula is still underdeveloped for steel reinforced UHPC beam. The present study aims to formulate a crack width prediction equation based on the equations in Chinese code GB50010 where the parameters can be regressed and calibrated. Ten UHPC beams with different steel fiber volumes and reinforcing ratios are experimentally tested to collect crack width and spacing data for comparison and validation purposes. Nonuniformity distribution coefficient of rebar strain and average crack spacing are calibrated by the test data. Also, rebar stress is calculated with considering residual tensile strength of UHPC based on a sectional analysis. The modified crack width equation is validated with the test results, showing the best prediction accuracy of 0.97 and standard deviation of 0.11 for the test beams in this study compared to those predicted by JTG 3362, CECS 38, MC and AFGC. This study is emphasizing crack width prediction and control in designing UHPC structures.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"35 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Crack Width Prediction for Flexural Steel Reinforced UHPC Beams\",\"authors\":\"Yanping Zhu, Yang Zhang, Xinzhe Yuan, Changgui Hou\",\"doi\":\"10.1186/s40069-023-00628-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The crack pattern of steel reinforced ultrahigh performance concrete (UHPC) beam is usually characterized by many densely distributed fine cracks (i.e., multiple microcracks) along with localized macrocrack, and the crack width development rate along the beam height is smaller than that of normal concrete since steel fibers and steel reinforcement bars are supposed to be effective in controlling crack width propagation of the UHPC beam. However, an effective crack width prediction formula is still underdeveloped for steel reinforced UHPC beam. The present study aims to formulate a crack width prediction equation based on the equations in Chinese code GB50010 where the parameters can be regressed and calibrated. Ten UHPC beams with different steel fiber volumes and reinforcing ratios are experimentally tested to collect crack width and spacing data for comparison and validation purposes. Nonuniformity distribution coefficient of rebar strain and average crack spacing are calibrated by the test data. Also, rebar stress is calculated with considering residual tensile strength of UHPC based on a sectional analysis. The modified crack width equation is validated with the test results, showing the best prediction accuracy of 0.97 and standard deviation of 0.11 for the test beams in this study compared to those predicted by JTG 3362, CECS 38, MC and AFGC. This study is emphasizing crack width prediction and control in designing UHPC structures.</p>\",\"PeriodicalId\":13832,\"journal\":{\"name\":\"International Journal of Concrete Structures and Materials\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Concrete Structures and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40069-023-00628-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-023-00628-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
An Adaptive Crack Width Prediction for Flexural Steel Reinforced UHPC Beams
The crack pattern of steel reinforced ultrahigh performance concrete (UHPC) beam is usually characterized by many densely distributed fine cracks (i.e., multiple microcracks) along with localized macrocrack, and the crack width development rate along the beam height is smaller than that of normal concrete since steel fibers and steel reinforcement bars are supposed to be effective in controlling crack width propagation of the UHPC beam. However, an effective crack width prediction formula is still underdeveloped for steel reinforced UHPC beam. The present study aims to formulate a crack width prediction equation based on the equations in Chinese code GB50010 where the parameters can be regressed and calibrated. Ten UHPC beams with different steel fiber volumes and reinforcing ratios are experimentally tested to collect crack width and spacing data for comparison and validation purposes. Nonuniformity distribution coefficient of rebar strain and average crack spacing are calibrated by the test data. Also, rebar stress is calculated with considering residual tensile strength of UHPC based on a sectional analysis. The modified crack width equation is validated with the test results, showing the best prediction accuracy of 0.97 and standard deviation of 0.11 for the test beams in this study compared to those predicted by JTG 3362, CECS 38, MC and AFGC. This study is emphasizing crack width prediction and control in designing UHPC structures.
期刊介绍:
The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on
Properties and performance of concrete and concrete structures
Advanced and improved experimental techniques
Latest modelling methods
Possible improvement and enhancement of concrete properties
Structural and microstructural characterization
Concrete applications
Fiber reinforced concrete technology
Concrete waste management.