{"title":"基于金鹰的改进型 Att-BiLSTM 模型,采用混合特征提取和特征选择技术进行大数据分类。","authors":"Gnanendra Kotikam, Lokesh Selvaraj","doi":"10.1080/0954898X.2023.2293895","DOIUrl":null,"url":null,"abstract":"<p><p>The remarkable development in technology has led to the increase of massive big data. Machine learning processes provide a way for investigators to examine and particularly classify big data. Besides, several machine learning models rely on powerful feature extraction and feature selection techniques for their success. In this paper, a big data classification approach is developed using an optimized deep learning classifier integrated with hybrid feature extraction and feature selection approaches. The proposed technique uses local linear embedding-based kernel principal component analysis and perturbation theory, respectively, to extract more representative data and select the appropriate features from the big data environment. In addition, the feature selection task is fine-tuned by using perturbation theory through heuristic search based on their output accuracy. This feature selection heuristic search method is analysed with five recent heuristic optimization algorithms for deciding the final feature subset. Finally, the data are categorized through an attention-based bidirectional long short-term memory classifier that is optimized with a golden eagle-inspired algorithm. The performance of the proposed model is experimentally verified on publicly accessible datasets. From the experimental outcomes, it is demonstrated that the proposed framework is capable of classifying large datasets with more than 90% accuracy.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"154-189"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Golden eagle based improved Att-BiLSTM model for big data classification with hybrid feature extraction and feature selection techniques.\",\"authors\":\"Gnanendra Kotikam, Lokesh Selvaraj\",\"doi\":\"10.1080/0954898X.2023.2293895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The remarkable development in technology has led to the increase of massive big data. Machine learning processes provide a way for investigators to examine and particularly classify big data. Besides, several machine learning models rely on powerful feature extraction and feature selection techniques for their success. In this paper, a big data classification approach is developed using an optimized deep learning classifier integrated with hybrid feature extraction and feature selection approaches. The proposed technique uses local linear embedding-based kernel principal component analysis and perturbation theory, respectively, to extract more representative data and select the appropriate features from the big data environment. In addition, the feature selection task is fine-tuned by using perturbation theory through heuristic search based on their output accuracy. This feature selection heuristic search method is analysed with five recent heuristic optimization algorithms for deciding the final feature subset. Finally, the data are categorized through an attention-based bidirectional long short-term memory classifier that is optimized with a golden eagle-inspired algorithm. The performance of the proposed model is experimentally verified on publicly accessible datasets. From the experimental outcomes, it is demonstrated that the proposed framework is capable of classifying large datasets with more than 90% accuracy.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"154-189\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2023.2293895\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2293895","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Golden eagle based improved Att-BiLSTM model for big data classification with hybrid feature extraction and feature selection techniques.
The remarkable development in technology has led to the increase of massive big data. Machine learning processes provide a way for investigators to examine and particularly classify big data. Besides, several machine learning models rely on powerful feature extraction and feature selection techniques for their success. In this paper, a big data classification approach is developed using an optimized deep learning classifier integrated with hybrid feature extraction and feature selection approaches. The proposed technique uses local linear embedding-based kernel principal component analysis and perturbation theory, respectively, to extract more representative data and select the appropriate features from the big data environment. In addition, the feature selection task is fine-tuned by using perturbation theory through heuristic search based on their output accuracy. This feature selection heuristic search method is analysed with five recent heuristic optimization algorithms for deciding the final feature subset. Finally, the data are categorized through an attention-based bidirectional long short-term memory classifier that is optimized with a golden eagle-inspired algorithm. The performance of the proposed model is experimentally verified on publicly accessible datasets. From the experimental outcomes, it is demonstrated that the proposed framework is capable of classifying large datasets with more than 90% accuracy.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.