{"title":"用扫描透射电子显微镜观察磁隧道结中的磁场。","authors":"Yuji Kohno, Takehito Seki, Shun Tsuruoka, Shinobu Ohya, Naoya Shibata","doi":"10.1093/jmicro/dfad063","DOIUrl":null,"url":null,"abstract":"<p><p>A magnetic tunnel junction (MTJ) consists of two ferromagnetic layers separated by a thin insulating layer. MTJs show tunnel magnetoresistance effect, where the resistance in the direction perpendicular to the insulator layer drastically changes depending on the magnetization directions (parallel or antiparallel) in the ferromagnetic layers. However, direct observation of local magnetizations inside MTJs has been challenging. In this study, we demonstrate direct observation of magnetic flux density distribution inside epitaxially grown Fe/MgO/Fe layers using differential phase contrast scanning transmission electron microscopy. By utilizing newly developed tilt-scan averaging system for suppressing diffraction contrasts, we clearly visualize parallel and antiparallel states of ferromagnetic layers at nanometer resolution.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"329-334"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic field observation in a magnetic tunnel junction by scanning transmission electron microscopy.\",\"authors\":\"Yuji Kohno, Takehito Seki, Shun Tsuruoka, Shinobu Ohya, Naoya Shibata\",\"doi\":\"10.1093/jmicro/dfad063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A magnetic tunnel junction (MTJ) consists of two ferromagnetic layers separated by a thin insulating layer. MTJs show tunnel magnetoresistance effect, where the resistance in the direction perpendicular to the insulator layer drastically changes depending on the magnetization directions (parallel or antiparallel) in the ferromagnetic layers. However, direct observation of local magnetizations inside MTJs has been challenging. In this study, we demonstrate direct observation of magnetic flux density distribution inside epitaxially grown Fe/MgO/Fe layers using differential phase contrast scanning transmission electron microscopy. By utilizing newly developed tilt-scan averaging system for suppressing diffraction contrasts, we clearly visualize parallel and antiparallel states of ferromagnetic layers at nanometer resolution.</p>\",\"PeriodicalId\":74193,\"journal\":{\"name\":\"Microscopy (Oxford, England)\",\"volume\":\" \",\"pages\":\"329-334\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jmicro/dfad063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfad063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetic field observation in a magnetic tunnel junction by scanning transmission electron microscopy.
A magnetic tunnel junction (MTJ) consists of two ferromagnetic layers separated by a thin insulating layer. MTJs show tunnel magnetoresistance effect, where the resistance in the direction perpendicular to the insulator layer drastically changes depending on the magnetization directions (parallel or antiparallel) in the ferromagnetic layers. However, direct observation of local magnetizations inside MTJs has been challenging. In this study, we demonstrate direct observation of magnetic flux density distribution inside epitaxially grown Fe/MgO/Fe layers using differential phase contrast scanning transmission electron microscopy. By utilizing newly developed tilt-scan averaging system for suppressing diffraction contrasts, we clearly visualize parallel and antiparallel states of ferromagnetic layers at nanometer resolution.