HiQR:带惩罚的高维二次回归高效算法

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational Statistics & Data Analysis Pub Date : 2023-12-28 DOI:10.1016/j.csda.2023.107904
Cheng Wang , Haozhe Chen , Binyan Jiang
{"title":"HiQR:带惩罚的高维二次回归高效算法","authors":"Cheng Wang ,&nbsp;Haozhe Chen ,&nbsp;Binyan Jiang","doi":"10.1016/j.csda.2023.107904","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>This paper investigates the efficient solution of penalized quadratic regressions in high-dimensional settings. A novel and efficient algorithm for ridge-penalized quadratic regression is proposed, leveraging the matrix structures of the regression with interactions. Additionally, an </span>alternating direction method of multipliers (ADMM) framework is developed for penalized quadratic regression with general penalties, including both single and hybrid penalty functions. The approach simplifies the calculations to basic matrix-based operations, making it appealing in terms of both memory storage and </span>computational complexity for solving penalized quadratic regressions in high-dimensional settings.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HiQR: An efficient algorithm for high-dimensional quadratic regression with penalties\",\"authors\":\"Cheng Wang ,&nbsp;Haozhe Chen ,&nbsp;Binyan Jiang\",\"doi\":\"10.1016/j.csda.2023.107904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>This paper investigates the efficient solution of penalized quadratic regressions in high-dimensional settings. A novel and efficient algorithm for ridge-penalized quadratic regression is proposed, leveraging the matrix structures of the regression with interactions. Additionally, an </span>alternating direction method of multipliers (ADMM) framework is developed for penalized quadratic regression with general penalties, including both single and hybrid penalty functions. The approach simplifies the calculations to basic matrix-based operations, making it appealing in terms of both memory storage and </span>computational complexity for solving penalized quadratic regressions in high-dimensional settings.</p></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947323002153\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947323002153","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了高维环境下惩罚性二次回归的高效解决方案。利用交互回归的矩阵结构,提出了一种新颖高效的脊惩罚二次回归算法。此外,还开发了一种交替方向乘法(ADMM)框架,用于具有一般惩罚的惩罚性二次回归,包括单一惩罚函数和混合惩罚函数。该方法将计算简化为基于矩阵的基本操作,因此在内存存储和计算复杂度方面都很有吸引力,可用于解决高维环境中的惩罚二次回归问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HiQR: An efficient algorithm for high-dimensional quadratic regression with penalties

This paper investigates the efficient solution of penalized quadratic regressions in high-dimensional settings. A novel and efficient algorithm for ridge-penalized quadratic regression is proposed, leveraging the matrix structures of the regression with interactions. Additionally, an alternating direction method of multipliers (ADMM) framework is developed for penalized quadratic regression with general penalties, including both single and hybrid penalty functions. The approach simplifies the calculations to basic matrix-based operations, making it appealing in terms of both memory storage and computational complexity for solving penalized quadratic regressions in high-dimensional settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
期刊最新文献
Goodness–of–fit tests based on the min–characteristic function Editorial Board A switching state-space transmission model for tracking epidemics and assessing interventions Empirical Bayes Poisson matrix completion Transfer learning via random forests: A one-shot federated approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1