{"title":"用于基于目标的语义分析的优化方面和自我注意感知 LSTM(OAS-LSTM-TSA)","authors":"B. Vasavi, P. Dileep, Ulligaddala Srrinivasarao","doi":"10.1108/dta-10-2022-0408","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Aspect-based sentiment analysis (ASA) is a task of sentiment analysis that requires predicting aspect sentiment polarity for a given sentence. Many traditional techniques use graph-based mechanisms, which reduce prediction accuracy and introduce large amounts of noise. The other problem with graph-based mechanisms is that for some context words, the feelings change depending on the aspect, and therefore it is impossible to draw conclusions on their own. ASA is challenging because a given sentence can reveal complicated feelings about multiple aspects.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This research proposed an optimized attention-based DL model known as optimized aspect and self-attention aware long short-term memory for target-based semantic analysis (OAS-LSTM-TSA). The proposed model goes through three phases: preprocessing, aspect extraction and classification. Aspect extraction is done using a double-layered convolutional neural network (DL-CNN). The optimized aspect and self-attention embedded LSTM (OAS-LSTM) is used to classify aspect sentiment into three classes: positive, neutral and negative.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>To detect and classify sentiment polarity of the aspect using the optimized aspect and self-attention embedded LSTM (OAS-LSTM) model. The results of the proposed method revealed that it achieves a high accuracy of 95.3 per cent for the restaurant dataset and 96.7 per cent for the laptop dataset.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The novelty of the research work is the addition of two effective attention layers in the network model, loss function reduction and accuracy enhancement, using a recent efficient optimization algorithm. The loss function in OAS-LSTM is minimized using the adaptive pelican optimization algorithm, thus increasing the accuracy rate. The performance of the proposed method is validated on four real-time datasets, Rest14, Lap14, Rest15 and Rest16, for various performance metrics.</p><!--/ Abstract__block -->","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":"21 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized aspect and self-attention aware LSTM for target-based semantic analysis (OAS-LSTM-TSA)\",\"authors\":\"B. Vasavi, P. Dileep, Ulligaddala Srrinivasarao\",\"doi\":\"10.1108/dta-10-2022-0408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Aspect-based sentiment analysis (ASA) is a task of sentiment analysis that requires predicting aspect sentiment polarity for a given sentence. Many traditional techniques use graph-based mechanisms, which reduce prediction accuracy and introduce large amounts of noise. The other problem with graph-based mechanisms is that for some context words, the feelings change depending on the aspect, and therefore it is impossible to draw conclusions on their own. ASA is challenging because a given sentence can reveal complicated feelings about multiple aspects.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>This research proposed an optimized attention-based DL model known as optimized aspect and self-attention aware long short-term memory for target-based semantic analysis (OAS-LSTM-TSA). The proposed model goes through three phases: preprocessing, aspect extraction and classification. Aspect extraction is done using a double-layered convolutional neural network (DL-CNN). The optimized aspect and self-attention embedded LSTM (OAS-LSTM) is used to classify aspect sentiment into three classes: positive, neutral and negative.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>To detect and classify sentiment polarity of the aspect using the optimized aspect and self-attention embedded LSTM (OAS-LSTM) model. The results of the proposed method revealed that it achieves a high accuracy of 95.3 per cent for the restaurant dataset and 96.7 per cent for the laptop dataset.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The novelty of the research work is the addition of two effective attention layers in the network model, loss function reduction and accuracy enhancement, using a recent efficient optimization algorithm. The loss function in OAS-LSTM is minimized using the adaptive pelican optimization algorithm, thus increasing the accuracy rate. The performance of the proposed method is validated on four real-time datasets, Rest14, Lap14, Rest15 and Rest16, for various performance metrics.</p><!--/ Abstract__block -->\",\"PeriodicalId\":56156,\"journal\":{\"name\":\"Data Technologies and Applications\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Technologies and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/dta-10-2022-0408\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-10-2022-0408","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Optimized aspect and self-attention aware LSTM for target-based semantic analysis (OAS-LSTM-TSA)
Purpose
Aspect-based sentiment analysis (ASA) is a task of sentiment analysis that requires predicting aspect sentiment polarity for a given sentence. Many traditional techniques use graph-based mechanisms, which reduce prediction accuracy and introduce large amounts of noise. The other problem with graph-based mechanisms is that for some context words, the feelings change depending on the aspect, and therefore it is impossible to draw conclusions on their own. ASA is challenging because a given sentence can reveal complicated feelings about multiple aspects.
Design/methodology/approach
This research proposed an optimized attention-based DL model known as optimized aspect and self-attention aware long short-term memory for target-based semantic analysis (OAS-LSTM-TSA). The proposed model goes through three phases: preprocessing, aspect extraction and classification. Aspect extraction is done using a double-layered convolutional neural network (DL-CNN). The optimized aspect and self-attention embedded LSTM (OAS-LSTM) is used to classify aspect sentiment into three classes: positive, neutral and negative.
Findings
To detect and classify sentiment polarity of the aspect using the optimized aspect and self-attention embedded LSTM (OAS-LSTM) model. The results of the proposed method revealed that it achieves a high accuracy of 95.3 per cent for the restaurant dataset and 96.7 per cent for the laptop dataset.
Originality/value
The novelty of the research work is the addition of two effective attention layers in the network model, loss function reduction and accuracy enhancement, using a recent efficient optimization algorithm. The loss function in OAS-LSTM is minimized using the adaptive pelican optimization algorithm, thus increasing the accuracy rate. The performance of the proposed method is validated on four real-time datasets, Rest14, Lap14, Rest15 and Rest16, for various performance metrics.