小麦 ABC 基因家族的全基因组鉴定及对真菌胁迫处理的响应表达

IF 1.7 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Reports Pub Date : 2023-12-29 DOI:10.1007/s11816-023-00881-2
Guanghao Wang, Jianhua Gu, Deyu Long, Xiangyu Zhang, Chenxu Zhao, Hong Zhang, Chunhuan Chen, Wanquan Ji
{"title":"小麦 ABC 基因家族的全基因组鉴定及对真菌胁迫处理的响应表达","authors":"Guanghao Wang, Jianhua Gu, Deyu Long, Xiangyu Zhang, Chenxu Zhao, Hong Zhang, Chunhuan Chen, Wanquan Ji","doi":"10.1007/s11816-023-00881-2","DOIUrl":null,"url":null,"abstract":"<p>The ATP-binding cassette (ABC) transporter family is one of the largest protein families in plants and plays an essential role in addressing biotic and abiotic stresses. Wheat, a vital global grain crop, faces multifaceted safety challenges, primarily from fungal diseases like stripe rust and powdery mildew. In the present study, we identified the whole genome of the wheat <i>ABC</i> family, and 463 nonredundant <i>ABC</i> genes were identified. The <i>ABC</i> family can be divided into nine evolutionary branches and eight subfamilies based on phylogenetic tree analysis. This paper delved deeper into characterizing the gene structure, promoter region, and gene expression within the <i>TaABC</i> family. Segmental duplication was the main reason for the expansion of the <i>TaABC</i> genes. Ka/Ks analysis suggested that most <i>TaABC</i> genes were intensely purified and selected. The collinear analysis of <i>TaABC</i> and other species showed that the <i>ABC</i> genes were conserved in evolution. RNA-seq data and qPCR data from wheat infected with powdery mildew or stripe rust showed that most <i>TaABC</i> genes were induced to change expression. The candidate genes <i>TaABCB15-3B</i> and <i>TaABCG38</i> exhibited responsiveness to powdery mildew in resistant/susceptible wheat, while remaining unresponsive to stripe rust. Our findings serve as a valuable reference for gaining a deeper understanding of the function and evolution of <i>TaABCs</i>, aiding in the identification of enduring disease resistance genes within the TaABCs of wheat.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":"81 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide identification of wheat ABC gene family and expression in response to fungal stress treatment\",\"authors\":\"Guanghao Wang, Jianhua Gu, Deyu Long, Xiangyu Zhang, Chenxu Zhao, Hong Zhang, Chunhuan Chen, Wanquan Ji\",\"doi\":\"10.1007/s11816-023-00881-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ATP-binding cassette (ABC) transporter family is one of the largest protein families in plants and plays an essential role in addressing biotic and abiotic stresses. Wheat, a vital global grain crop, faces multifaceted safety challenges, primarily from fungal diseases like stripe rust and powdery mildew. In the present study, we identified the whole genome of the wheat <i>ABC</i> family, and 463 nonredundant <i>ABC</i> genes were identified. The <i>ABC</i> family can be divided into nine evolutionary branches and eight subfamilies based on phylogenetic tree analysis. This paper delved deeper into characterizing the gene structure, promoter region, and gene expression within the <i>TaABC</i> family. Segmental duplication was the main reason for the expansion of the <i>TaABC</i> genes. Ka/Ks analysis suggested that most <i>TaABC</i> genes were intensely purified and selected. The collinear analysis of <i>TaABC</i> and other species showed that the <i>ABC</i> genes were conserved in evolution. RNA-seq data and qPCR data from wheat infected with powdery mildew or stripe rust showed that most <i>TaABC</i> genes were induced to change expression. The candidate genes <i>TaABCB15-3B</i> and <i>TaABCG38</i> exhibited responsiveness to powdery mildew in resistant/susceptible wheat, while remaining unresponsive to stripe rust. Our findings serve as a valuable reference for gaining a deeper understanding of the function and evolution of <i>TaABCs</i>, aiding in the identification of enduring disease resistance genes within the TaABCs of wheat.</p>\",\"PeriodicalId\":20216,\"journal\":{\"name\":\"Plant Biotechnology Reports\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11816-023-00881-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Reports","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11816-023-00881-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

ATP 结合盒(ABC)转运体家族是植物中最大的蛋白质家族之一,在应对生物和非生物胁迫方面发挥着至关重要的作用。小麦是全球重要的粮食作物,面临着多方面的安全挑战,主要是条锈病和白粉病等真菌疾病。在本研究中,我们对小麦 ABC 家族进行了全基因组鉴定,共鉴定出 463 个非冗余 ABC 基因。根据系统发生树分析,ABC家族可分为9个进化分支和8个亚科。本文对TaABC家族的基因结构、启动子区域和基因表达进行了深入研究。片段复制是TaABC基因扩增的主要原因。Ka/Ks分析表明,大多数TaABC基因都经过了严格的纯化和筛选。对TaABC和其他物种的比对分析表明,ABC基因在进化过程中是保守的。小麦感染白粉病或条锈病后的 RNA-seq 数据和 qPCR 数据表明,大多数 TaABC 基因被诱导改变了表达。候选基因 TaABCB15-3B 和 TaABCG38 在抗性/易感小麦中表现出对白粉病的响应性,而对条锈病则没有响应性。我们的研究结果为深入了解 TaABCs 的功能和进化提供了宝贵的参考,有助于在小麦 TaABCs 中鉴定持久的抗病基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome-wide identification of wheat ABC gene family and expression in response to fungal stress treatment

The ATP-binding cassette (ABC) transporter family is one of the largest protein families in plants and plays an essential role in addressing biotic and abiotic stresses. Wheat, a vital global grain crop, faces multifaceted safety challenges, primarily from fungal diseases like stripe rust and powdery mildew. In the present study, we identified the whole genome of the wheat ABC family, and 463 nonredundant ABC genes were identified. The ABC family can be divided into nine evolutionary branches and eight subfamilies based on phylogenetic tree analysis. This paper delved deeper into characterizing the gene structure, promoter region, and gene expression within the TaABC family. Segmental duplication was the main reason for the expansion of the TaABC genes. Ka/Ks analysis suggested that most TaABC genes were intensely purified and selected. The collinear analysis of TaABC and other species showed that the ABC genes were conserved in evolution. RNA-seq data and qPCR data from wheat infected with powdery mildew or stripe rust showed that most TaABC genes were induced to change expression. The candidate genes TaABCB15-3B and TaABCG38 exhibited responsiveness to powdery mildew in resistant/susceptible wheat, while remaining unresponsive to stripe rust. Our findings serve as a valuable reference for gaining a deeper understanding of the function and evolution of TaABCs, aiding in the identification of enduring disease resistance genes within the TaABCs of wheat.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Biotechnology Reports
Plant Biotechnology Reports 生物-生物工程与应用微生物
CiteScore
4.10
自引率
4.20%
发文量
72
审稿时长
>12 weeks
期刊介绍: Plant Biotechnology Reports publishes original, peer-reviewed articles dealing with all aspects of fundamental and applied research in the field of plant biotechnology, which includes molecular biology, genetics, biochemistry, cell and tissue culture, production of secondary metabolites, metabolic engineering, genomics, proteomics, and metabolomics. Plant Biotechnology Reports emphasizes studies on plants indigenous to the Asia-Pacific region and studies related to commercialization of plant biotechnology. Plant Biotechnology Reports does not exclude studies on lower plants including algae and cyanobacteria if studies are carried out within the aspects described above.
期刊最新文献
Overexpression of CRK4, the cysteine-rich receptor-like protein kinase of Arabidopsis, regulates the resistance to abiotic stress and abscisic acid responses Identification and characterization of a novel Wx-B1 allele in a waxy wheat (Triticum aestivum L.) Molecular characterization of a sweetpotato stress tolerance-associated GDP-L-galactose phosphorylase gene (IbGGP1) in response to abiotic stress Differential expression of sweetpotato nodulin 26-like intrinsic protein (NIP) genes in response to infection with the root knot nematode Identification of key genes regulating macronutrient accumulation and final yield in wheat under potassium deficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1