Fengda Zhang, Zitao Shuai, Kun Kuang, Fei Wu, Yueting Zhuang, Jun Xiao
{"title":"为数字医疗提供统一公平的联合学习","authors":"Fengda Zhang, Zitao Shuai, Kun Kuang, Fei Wu, Yueting Zhuang, Jun Xiao","doi":"10.1016/j.patter.2023.100907","DOIUrl":null,"url":null,"abstract":"<p>Federated learning (FL) is a promising approach for healthcare institutions to train high-quality medical models collaboratively while protecting sensitive data privacy. However, FL models encounter fairness issues at diverse levels, leading to performance disparities across different subpopulations. To address this, we propose Federated Learning with Unified Fairness Objective (FedUFO), a unified framework consolidating diverse fairness levels within FL. By leveraging distributionally robust optimization and a unified uncertainty set, it ensures consistent performance across all subpopulations and enhances the overall efficacy of FL in healthcare and other domains while maintaining accuracy levels comparable with those of existing methods. Our model was validated by applying it to four digital healthcare tasks using real-world datasets in federated settings. Our collaborative machine learning paradigm not only promotes artificial intelligence in digital healthcare but also fosters social equity by embodying fairness.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified fair federated learning for digital healthcare\",\"authors\":\"Fengda Zhang, Zitao Shuai, Kun Kuang, Fei Wu, Yueting Zhuang, Jun Xiao\",\"doi\":\"10.1016/j.patter.2023.100907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Federated learning (FL) is a promising approach for healthcare institutions to train high-quality medical models collaboratively while protecting sensitive data privacy. However, FL models encounter fairness issues at diverse levels, leading to performance disparities across different subpopulations. To address this, we propose Federated Learning with Unified Fairness Objective (FedUFO), a unified framework consolidating diverse fairness levels within FL. By leveraging distributionally robust optimization and a unified uncertainty set, it ensures consistent performance across all subpopulations and enhances the overall efficacy of FL in healthcare and other domains while maintaining accuracy levels comparable with those of existing methods. Our model was validated by applying it to four digital healthcare tasks using real-world datasets in federated settings. Our collaborative machine learning paradigm not only promotes artificial intelligence in digital healthcare but also fosters social equity by embodying fairness.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2023.100907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2023.100907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Unified fair federated learning for digital healthcare
Federated learning (FL) is a promising approach for healthcare institutions to train high-quality medical models collaboratively while protecting sensitive data privacy. However, FL models encounter fairness issues at diverse levels, leading to performance disparities across different subpopulations. To address this, we propose Federated Learning with Unified Fairness Objective (FedUFO), a unified framework consolidating diverse fairness levels within FL. By leveraging distributionally robust optimization and a unified uncertainty set, it ensures consistent performance across all subpopulations and enhances the overall efficacy of FL in healthcare and other domains while maintaining accuracy levels comparable with those of existing methods. Our model was validated by applying it to four digital healthcare tasks using real-world datasets in federated settings. Our collaborative machine learning paradigm not only promotes artificial intelligence in digital healthcare but also fosters social equity by embodying fairness.