Dominika A Kalkowska, Kamran Badizadegan, Janell A Routh, Cara C Burns, Eli S Rosenberg, I Ravi Brenner, Jane R Zucker, Marisa Langdon-Embry, Kimberly M Thompson
{"title":"2022 年美国爆发脊髓灰质炎疫情后未被发现的脊髓灰质炎病毒传播模型。","authors":"Dominika A Kalkowska, Kamran Badizadegan, Janell A Routh, Cara C Burns, Eli S Rosenberg, I Ravi Brenner, Jane R Zucker, Marisa Langdon-Embry, Kimberly M Thompson","doi":"10.1080/14760584.2023.2299401","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>New York State (NYS) reported a polio case (June 2022) and outbreak of imported type 2 circulating vaccine-derived poliovirus (cVDPV2) (last positive wastewater detection in February 2023), for which uncertainty remains about potential ongoing undetected transmission.</p><p><strong>Research design and methods: </strong>Extending a prior deterministic model, we apply an established stochastic modeling approach to characterize the confidence about no circulation (CNC) of cVDPV2 as a function of time since the last detected signal of transmission (i.e. poliovirus positive acute flaccid myelitis case or wastewater sample).</p><p><strong>Results: </strong>With the surveillance coverage for the NYS population majority and its focus on outbreak counties, modeling suggests a high CNC (95%) within 3-10 months of the last positive surveillance signal, depending on surveillance sensitivity and population mixing patterns. Uncertainty about surveillance sensitivity implies longer durations required to achieve higher CNC.</p><p><strong>Conclusions: </strong>In populations that maintain high overall immunization coverage with inactivated poliovirus vaccine (IPV), rare polio cases may occur in un(der)-vaccinated individuals. Modeling demonstrates the unlikeliness of type 2 outbreaks reestablishing endemic transmission or resulting in large absolute numbers of paralytic cases. Achieving and maintaining high immunization coverage with IPV remains the most effective measure to prevent outbreaks and shorten the duration of imported poliovirus transmission.</p>","PeriodicalId":12326,"journal":{"name":"Expert Review of Vaccines","volume":" ","pages":"186-195"},"PeriodicalIF":5.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284832/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modeling undetected poliovirus circulation following the 2022 outbreak in the United States.\",\"authors\":\"Dominika A Kalkowska, Kamran Badizadegan, Janell A Routh, Cara C Burns, Eli S Rosenberg, I Ravi Brenner, Jane R Zucker, Marisa Langdon-Embry, Kimberly M Thompson\",\"doi\":\"10.1080/14760584.2023.2299401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>New York State (NYS) reported a polio case (June 2022) and outbreak of imported type 2 circulating vaccine-derived poliovirus (cVDPV2) (last positive wastewater detection in February 2023), for which uncertainty remains about potential ongoing undetected transmission.</p><p><strong>Research design and methods: </strong>Extending a prior deterministic model, we apply an established stochastic modeling approach to characterize the confidence about no circulation (CNC) of cVDPV2 as a function of time since the last detected signal of transmission (i.e. poliovirus positive acute flaccid myelitis case or wastewater sample).</p><p><strong>Results: </strong>With the surveillance coverage for the NYS population majority and its focus on outbreak counties, modeling suggests a high CNC (95%) within 3-10 months of the last positive surveillance signal, depending on surveillance sensitivity and population mixing patterns. Uncertainty about surveillance sensitivity implies longer durations required to achieve higher CNC.</p><p><strong>Conclusions: </strong>In populations that maintain high overall immunization coverage with inactivated poliovirus vaccine (IPV), rare polio cases may occur in un(der)-vaccinated individuals. Modeling demonstrates the unlikeliness of type 2 outbreaks reestablishing endemic transmission or resulting in large absolute numbers of paralytic cases. Achieving and maintaining high immunization coverage with IPV remains the most effective measure to prevent outbreaks and shorten the duration of imported poliovirus transmission.</p>\",\"PeriodicalId\":12326,\"journal\":{\"name\":\"Expert Review of Vaccines\",\"volume\":\" \",\"pages\":\"186-195\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11284832/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Vaccines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14760584.2023.2299401\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14760584.2023.2299401","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Modeling undetected poliovirus circulation following the 2022 outbreak in the United States.
Background: New York State (NYS) reported a polio case (June 2022) and outbreak of imported type 2 circulating vaccine-derived poliovirus (cVDPV2) (last positive wastewater detection in February 2023), for which uncertainty remains about potential ongoing undetected transmission.
Research design and methods: Extending a prior deterministic model, we apply an established stochastic modeling approach to characterize the confidence about no circulation (CNC) of cVDPV2 as a function of time since the last detected signal of transmission (i.e. poliovirus positive acute flaccid myelitis case or wastewater sample).
Results: With the surveillance coverage for the NYS population majority and its focus on outbreak counties, modeling suggests a high CNC (95%) within 3-10 months of the last positive surveillance signal, depending on surveillance sensitivity and population mixing patterns. Uncertainty about surveillance sensitivity implies longer durations required to achieve higher CNC.
Conclusions: In populations that maintain high overall immunization coverage with inactivated poliovirus vaccine (IPV), rare polio cases may occur in un(der)-vaccinated individuals. Modeling demonstrates the unlikeliness of type 2 outbreaks reestablishing endemic transmission or resulting in large absolute numbers of paralytic cases. Achieving and maintaining high immunization coverage with IPV remains the most effective measure to prevent outbreaks and shorten the duration of imported poliovirus transmission.
期刊介绍:
Expert Review of Vaccines (ISSN 1476-0584) provides expert commentary on the development, application, and clinical effectiveness of new vaccines. Coverage includes vaccine technology, vaccine adjuvants, prophylactic vaccines, therapeutic vaccines, AIDS vaccines and vaccines for defence against bioterrorism. All articles are subject to rigorous peer-review.
The vaccine field has been transformed by recent technological advances, but there remain many challenges in the delivery of cost-effective, safe vaccines. Expert Review of Vaccines facilitates decision making to drive forward this exciting field.