Qiongshuai Lyu, Na Zhao, Yu Yang, Yuehong Gong, Jingli Gao
{"title":"中国传统山水画超分辨率的扩散概率模型","authors":"Qiongshuai Lyu, Na Zhao, Yu Yang, Yuehong Gong, Jingli Gao","doi":"10.1186/s40494-023-01123-y","DOIUrl":null,"url":null,"abstract":"<p>Traditional Chinese landscape painting is prone to low-resolution image issues during the digital protection process. To reconstruct high-quality images from low-resolution landscape paintings, we propose a novel Chinese landscape painting generation diffusion probabilistic model (CLDiff), which is similar to the Langevin dynamic process, and realizes the transformation of the Gaussian distribution into the empirical data distribution through multiple iterative refinement steps. The proposed CLDiff can provide ink texture clear super-resolution predictions by gradually transforming the pure Gaussian noise into a super-resolution landscape painting condition on a low-resolution input through a parameterized Markov Chain. Moreover, by introducing an attention module with an energy function into the U-Net architecture, we turn the denoising diffusion probabilistic model into a powerful generator. Experimental results show that CLDiff achieves better visual results and highly competitive performance in traditional Chinese Landscape painting super-resolution tasks.</p>","PeriodicalId":13109,"journal":{"name":"Heritage Science","volume":"23 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A diffusion probabilistic model for traditional Chinese landscape painting super-resolution\",\"authors\":\"Qiongshuai Lyu, Na Zhao, Yu Yang, Yuehong Gong, Jingli Gao\",\"doi\":\"10.1186/s40494-023-01123-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional Chinese landscape painting is prone to low-resolution image issues during the digital protection process. To reconstruct high-quality images from low-resolution landscape paintings, we propose a novel Chinese landscape painting generation diffusion probabilistic model (CLDiff), which is similar to the Langevin dynamic process, and realizes the transformation of the Gaussian distribution into the empirical data distribution through multiple iterative refinement steps. The proposed CLDiff can provide ink texture clear super-resolution predictions by gradually transforming the pure Gaussian noise into a super-resolution landscape painting condition on a low-resolution input through a parameterized Markov Chain. Moreover, by introducing an attention module with an energy function into the U-Net architecture, we turn the denoising diffusion probabilistic model into a powerful generator. Experimental results show that CLDiff achieves better visual results and highly competitive performance in traditional Chinese Landscape painting super-resolution tasks.</p>\",\"PeriodicalId\":13109,\"journal\":{\"name\":\"Heritage Science\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heritage Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1186/s40494-023-01123-y\",\"RegionNum\":1,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heritage Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40494-023-01123-y","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A diffusion probabilistic model for traditional Chinese landscape painting super-resolution
Traditional Chinese landscape painting is prone to low-resolution image issues during the digital protection process. To reconstruct high-quality images from low-resolution landscape paintings, we propose a novel Chinese landscape painting generation diffusion probabilistic model (CLDiff), which is similar to the Langevin dynamic process, and realizes the transformation of the Gaussian distribution into the empirical data distribution through multiple iterative refinement steps. The proposed CLDiff can provide ink texture clear super-resolution predictions by gradually transforming the pure Gaussian noise into a super-resolution landscape painting condition on a low-resolution input through a parameterized Markov Chain. Moreover, by introducing an attention module with an energy function into the U-Net architecture, we turn the denoising diffusion probabilistic model into a powerful generator. Experimental results show that CLDiff achieves better visual results and highly competitive performance in traditional Chinese Landscape painting super-resolution tasks.
期刊介绍:
Heritage Science is an open access journal publishing original peer-reviewed research covering:
Understanding of the manufacturing processes, provenances, and environmental contexts of material types, objects, and buildings, of cultural significance including their historical significance.
Understanding and prediction of physico-chemical and biological degradation processes of cultural artefacts, including climate change, and predictive heritage studies.
Development and application of analytical and imaging methods or equipments for non-invasive, non-destructive or portable analysis of artwork and objects of cultural significance to identify component materials, degradation products and deterioration markers.
Development and application of invasive and destructive methods for understanding the provenance of objects of cultural significance.
Development and critical assessment of treatment materials and methods for artwork and objects of cultural significance.
Development and application of statistical methods and algorithms for data analysis to further understanding of culturally significant objects.
Publication of reference and corpus datasets as supplementary information to the statistical and analytical studies above.
Description of novel technologies that can assist in the understanding of cultural heritage.