Maryse Gille, Fanny Mas, Jean-Christophe Ehrström, Dominique Daniel
{"title":"开发平面应变拉伸试验,鉴定 5xxx 和 6xxx 铝合金的可成形性","authors":"Maryse Gille, Fanny Mas, Jean-Christophe Ehrström, Dominique Daniel","doi":"10.1007/s12289-023-01805-9","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents the development of a plane strain tensile test aiming at an easy classification of aluminium automotive alloys according to their formability in prototyping steps. A parametric study with finite element method is performed on three different designs inspired by literature. It is found that, due to plastic anisotropy, specimens designed for steel are not suited for aluminium alloys. One optimized specimen geometry, ensuring near plane strain state on a large zone all along the deformation range up to failure, is selected. On this geometry, tensile tests instrumented by Digital Image Correlation are performed for five different aluminium alloys (5xxx and 6xxx) in three different directions of the metal sheet (rolling, diagonal and transverse). From Digital Image Correlation analysis, necking limits are evaluated and their relevance for the ranking of alloys according to their formability is discussed in comparison with a standard formability test, namely the Limiting Dome Height test.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a plane strain tensile test to characterize the formability of 5xxx and 6xxx aluminium alloys\",\"authors\":\"Maryse Gille, Fanny Mas, Jean-Christophe Ehrström, Dominique Daniel\",\"doi\":\"10.1007/s12289-023-01805-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article presents the development of a plane strain tensile test aiming at an easy classification of aluminium automotive alloys according to their formability in prototyping steps. A parametric study with finite element method is performed on three different designs inspired by literature. It is found that, due to plastic anisotropy, specimens designed for steel are not suited for aluminium alloys. One optimized specimen geometry, ensuring near plane strain state on a large zone all along the deformation range up to failure, is selected. On this geometry, tensile tests instrumented by Digital Image Correlation are performed for five different aluminium alloys (5xxx and 6xxx) in three different directions of the metal sheet (rolling, diagonal and transverse). From Digital Image Correlation analysis, necking limits are evaluated and their relevance for the ranking of alloys according to their formability is discussed in comparison with a standard formability test, namely the Limiting Dome Height test.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-023-01805-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01805-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Development of a plane strain tensile test to characterize the formability of 5xxx and 6xxx aluminium alloys
This article presents the development of a plane strain tensile test aiming at an easy classification of aluminium automotive alloys according to their formability in prototyping steps. A parametric study with finite element method is performed on three different designs inspired by literature. It is found that, due to plastic anisotropy, specimens designed for steel are not suited for aluminium alloys. One optimized specimen geometry, ensuring near plane strain state on a large zone all along the deformation range up to failure, is selected. On this geometry, tensile tests instrumented by Digital Image Correlation are performed for five different aluminium alloys (5xxx and 6xxx) in three different directions of the metal sheet (rolling, diagonal and transverse). From Digital Image Correlation analysis, necking limits are evaluated and their relevance for the ranking of alloys according to their formability is discussed in comparison with a standard formability test, namely the Limiting Dome Height test.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.