Gabriel Fonseca Silva, Paulo Ricardo Knob, Rubens Halbig Montanha, Soraia Raupp Musse
{"title":"评估和比较人群模拟:人群创作工具的视角","authors":"Gabriel Fonseca Silva, Paulo Ricardo Knob, Rubens Halbig Montanha, Soraia Raupp Musse","doi":"10.1016/j.gmod.2023.101212","DOIUrl":null,"url":null,"abstract":"<div><p>Crowd simulation is a research area widely used in diverse fields, including gaming and security, assessing virtual agent movements through metrics like time to reach their goals, speed, trajectories, and densities. This is relevant for security applications, for instance, as different crowd configurations can determine the time people spend in environments trying to evacuate them. In this work, we extend WebCrowds, an authoring tool for crowd simulation, to allow users to build scenarios and evaluate them through a set of metrics. The aim is to provide a quantitative metric that can, based on simulation data, select the best crowd configuration in a certain environment. We conduct experiments to validate our proposed metric in multiple crowd simulation scenarios and perform a comparison with another metric found in the literature. The results show that experts in the domain of crowd scenarios agree with our proposed quantitative metric.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"131 ","pages":"Article 101212"},"PeriodicalIF":2.5000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070323000425/pdfft?md5=99cc8b127e117c8937d599aa1f5ebafe&pid=1-s2.0-S1524070323000425-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Evaluating and comparing crowd simulations: Perspectives from a crowd authoring tool\",\"authors\":\"Gabriel Fonseca Silva, Paulo Ricardo Knob, Rubens Halbig Montanha, Soraia Raupp Musse\",\"doi\":\"10.1016/j.gmod.2023.101212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Crowd simulation is a research area widely used in diverse fields, including gaming and security, assessing virtual agent movements through metrics like time to reach their goals, speed, trajectories, and densities. This is relevant for security applications, for instance, as different crowd configurations can determine the time people spend in environments trying to evacuate them. In this work, we extend WebCrowds, an authoring tool for crowd simulation, to allow users to build scenarios and evaluate them through a set of metrics. The aim is to provide a quantitative metric that can, based on simulation data, select the best crowd configuration in a certain environment. We conduct experiments to validate our proposed metric in multiple crowd simulation scenarios and perform a comparison with another metric found in the literature. The results show that experts in the domain of crowd scenarios agree with our proposed quantitative metric.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"131 \",\"pages\":\"Article 101212\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1524070323000425/pdfft?md5=99cc8b127e117c8937d599aa1f5ebafe&pid=1-s2.0-S1524070323000425-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070323000425\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000425","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Evaluating and comparing crowd simulations: Perspectives from a crowd authoring tool
Crowd simulation is a research area widely used in diverse fields, including gaming and security, assessing virtual agent movements through metrics like time to reach their goals, speed, trajectories, and densities. This is relevant for security applications, for instance, as different crowd configurations can determine the time people spend in environments trying to evacuate them. In this work, we extend WebCrowds, an authoring tool for crowd simulation, to allow users to build scenarios and evaluate them through a set of metrics. The aim is to provide a quantitative metric that can, based on simulation data, select the best crowd configuration in a certain environment. We conduct experiments to validate our proposed metric in multiple crowd simulation scenarios and perform a comparison with another metric found in the literature. The results show that experts in the domain of crowd scenarios agree with our proposed quantitative metric.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.