{"title":"面孔处理网络功能连接发展的性别差异。","authors":"Duncan Nowling, Kathleen I. Crum, Jane Joseph","doi":"10.1111/jon.13185","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>Understanding sex differences in typical development of the face processing network is important for elucidating disruptions during atypical development in sex-linked developmental disorders like autism spectrum disorder. Based on prior sex difference studies in other cognitive domains, this study examined whether females show increased integration of core and extended face regions with age for face viewing, while males would show increased segregation.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>This study used a cross-sectional design with typically developing children and adults (<i>n</i> = 133) and a functional MRI face localizer task. Psychophysiological interaction (PPI) analysis examined functional connectivity between canonical and extended face processing network regions with age, with greater segregation indexed by decreased core-extended region connectivity with age and greater integration indexed by increased core-extended region connectivity with age.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>PPI analysis confirmed increased segregation for males—right fusiform face area (FFA) coupling to right inferior frontal gyrus (IFG) opercular when viewing faces and left amygdala when viewing objects decreased with age. Females showed increased integration with age (increased coupling of the right FFA to right IFG opercular region and right occipital face area [OFA] to right IFG orbital when viewing faces and objects, respectively) and increased segregation (decreased coupling with age of the right OFA with IFG opercular region when viewing faces).</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Development of core and extended face processing network connectivity follows sexually dimorphic paths. These differential changes mostly occur across childhood and adolescence, with males experiencing segregation and females both segregation and integration changes in connectivity.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"34 2","pages":"280-290"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sex differences in development of functional connections in the face processing network\",\"authors\":\"Duncan Nowling, Kathleen I. Crum, Jane Joseph\",\"doi\":\"10.1111/jon.13185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and Purpose</h3>\\n \\n <p>Understanding sex differences in typical development of the face processing network is important for elucidating disruptions during atypical development in sex-linked developmental disorders like autism spectrum disorder. Based on prior sex difference studies in other cognitive domains, this study examined whether females show increased integration of core and extended face regions with age for face viewing, while males would show increased segregation.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>This study used a cross-sectional design with typically developing children and adults (<i>n</i> = 133) and a functional MRI face localizer task. Psychophysiological interaction (PPI) analysis examined functional connectivity between canonical and extended face processing network regions with age, with greater segregation indexed by decreased core-extended region connectivity with age and greater integration indexed by increased core-extended region connectivity with age.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>PPI analysis confirmed increased segregation for males—right fusiform face area (FFA) coupling to right inferior frontal gyrus (IFG) opercular when viewing faces and left amygdala when viewing objects decreased with age. Females showed increased integration with age (increased coupling of the right FFA to right IFG opercular region and right occipital face area [OFA] to right IFG orbital when viewing faces and objects, respectively) and increased segregation (decreased coupling with age of the right OFA with IFG opercular region when viewing faces).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Development of core and extended face processing network connectivity follows sexually dimorphic paths. These differential changes mostly occur across childhood and adolescence, with males experiencing segregation and females both segregation and integration changes in connectivity.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"34 2\",\"pages\":\"280-290\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jon.13185\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.13185","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Sex differences in development of functional connections in the face processing network
Background and Purpose
Understanding sex differences in typical development of the face processing network is important for elucidating disruptions during atypical development in sex-linked developmental disorders like autism spectrum disorder. Based on prior sex difference studies in other cognitive domains, this study examined whether females show increased integration of core and extended face regions with age for face viewing, while males would show increased segregation.
Methods
This study used a cross-sectional design with typically developing children and adults (n = 133) and a functional MRI face localizer task. Psychophysiological interaction (PPI) analysis examined functional connectivity between canonical and extended face processing network regions with age, with greater segregation indexed by decreased core-extended region connectivity with age and greater integration indexed by increased core-extended region connectivity with age.
Results
PPI analysis confirmed increased segregation for males—right fusiform face area (FFA) coupling to right inferior frontal gyrus (IFG) opercular when viewing faces and left amygdala when viewing objects decreased with age. Females showed increased integration with age (increased coupling of the right FFA to right IFG opercular region and right occipital face area [OFA] to right IFG orbital when viewing faces and objects, respectively) and increased segregation (decreased coupling with age of the right OFA with IFG opercular region when viewing faces).
Conclusions
Development of core and extended face processing network connectivity follows sexually dimorphic paths. These differential changes mostly occur across childhood and adolescence, with males experiencing segregation and females both segregation and integration changes in connectivity.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!