Zafar Mahmood, Khadija Rafique, Umar Khan, Taseer Muhammad, Ahmed Hassan
{"title":"利用达西-福克海默流分析辐射混合纳米流体穿过拉伸片传热时导热模型的重要性","authors":"Zafar Mahmood, Khadija Rafique, Umar Khan, Taseer Muhammad, Ahmed Hassan","doi":"10.1615/jpormedia.2024051713","DOIUrl":null,"url":null,"abstract":"Hybrid nanofluids' enhanced thermal efficiency has important applications in many fields of industry and engineering. So, the goal of this study is to find out how different thermal conductivity models affect important factors in the Darcy-Forchheimer flow and heat transfer of a hybrid nanofluid made of 〖Al〗_2 O_3-Cu and water across a moving surface that can let some fluid pass through it. Magnetohydrodynamics (MHD), thermal radiation, joule heating, and viscous dissipation are all included in the study. Partial differential equations (PDEs) are made more manageable by reducing them to a set of ordinary differential equations (ODEs) via a similarity transformation. After that, Mathematica's shooting technique and the Runge-Kutta algorithm are used to numerically solve these ODEs. The study analyses the effects of key factors on the major physical quantities of interest and presents the findings graphically and tabularly. The research also shows that differing thermal conductivity models lead to significantly varied average Nusselt values. The rate of heat transmission improves with the addition of ϕ_2 and S. The Xue model in the hybrid nanofluid shows a 0.7% increase in heat transfer rate compared to the nanofluid, while the Maxwell model shows a 0.64% increase, and the Yamada-Ota model shows a 1.01% increase. Importantly, for all the considered models of thermal conductivity, the research shows that the average Nusselt number increases linearly with the nanoparticle volume percentage. Finally, the data show that the Yamada-Ota model consistently produces far higher average Nusselt values than the other models.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Importance of Thermal Conductivity Models in Analyzing Heat Transfer of Radiative Hybrid Nanofluid Across a Stretching Sheet using Darcy-Forchheimer Flow\",\"authors\":\"Zafar Mahmood, Khadija Rafique, Umar Khan, Taseer Muhammad, Ahmed Hassan\",\"doi\":\"10.1615/jpormedia.2024051713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid nanofluids' enhanced thermal efficiency has important applications in many fields of industry and engineering. So, the goal of this study is to find out how different thermal conductivity models affect important factors in the Darcy-Forchheimer flow and heat transfer of a hybrid nanofluid made of 〖Al〗_2 O_3-Cu and water across a moving surface that can let some fluid pass through it. Magnetohydrodynamics (MHD), thermal radiation, joule heating, and viscous dissipation are all included in the study. Partial differential equations (PDEs) are made more manageable by reducing them to a set of ordinary differential equations (ODEs) via a similarity transformation. After that, Mathematica's shooting technique and the Runge-Kutta algorithm are used to numerically solve these ODEs. The study analyses the effects of key factors on the major physical quantities of interest and presents the findings graphically and tabularly. The research also shows that differing thermal conductivity models lead to significantly varied average Nusselt values. The rate of heat transmission improves with the addition of ϕ_2 and S. The Xue model in the hybrid nanofluid shows a 0.7% increase in heat transfer rate compared to the nanofluid, while the Maxwell model shows a 0.64% increase, and the Yamada-Ota model shows a 1.01% increase. Importantly, for all the considered models of thermal conductivity, the research shows that the average Nusselt number increases linearly with the nanoparticle volume percentage. Finally, the data show that the Yamada-Ota model consistently produces far higher average Nusselt values than the other models.\",\"PeriodicalId\":50082,\"journal\":{\"name\":\"Journal of Porous Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/jpormedia.2024051713\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Media","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/jpormedia.2024051713","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Importance of Thermal Conductivity Models in Analyzing Heat Transfer of Radiative Hybrid Nanofluid Across a Stretching Sheet using Darcy-Forchheimer Flow
Hybrid nanofluids' enhanced thermal efficiency has important applications in many fields of industry and engineering. So, the goal of this study is to find out how different thermal conductivity models affect important factors in the Darcy-Forchheimer flow and heat transfer of a hybrid nanofluid made of 〖Al〗_2 O_3-Cu and water across a moving surface that can let some fluid pass through it. Magnetohydrodynamics (MHD), thermal radiation, joule heating, and viscous dissipation are all included in the study. Partial differential equations (PDEs) are made more manageable by reducing them to a set of ordinary differential equations (ODEs) via a similarity transformation. After that, Mathematica's shooting technique and the Runge-Kutta algorithm are used to numerically solve these ODEs. The study analyses the effects of key factors on the major physical quantities of interest and presents the findings graphically and tabularly. The research also shows that differing thermal conductivity models lead to significantly varied average Nusselt values. The rate of heat transmission improves with the addition of ϕ_2 and S. The Xue model in the hybrid nanofluid shows a 0.7% increase in heat transfer rate compared to the nanofluid, while the Maxwell model shows a 0.64% increase, and the Yamada-Ota model shows a 1.01% increase. Importantly, for all the considered models of thermal conductivity, the research shows that the average Nusselt number increases linearly with the nanoparticle volume percentage. Finally, the data show that the Yamada-Ota model consistently produces far higher average Nusselt values than the other models.
期刊介绍:
The Journal of Porous Media publishes original full-length research articles (and technical notes) in a wide variety of areas related to porous media studies, such as mathematical modeling, numerical and experimental techniques, industrial and environmental heat and mass transfer, conduction, convection, radiation, particle transport and capillary effects, reactive flows, deformable porous media, biomedical applications, and mechanics of the porous substrate. Emphasis will be given to manuscripts that present novel findings pertinent to these areas. The journal will also consider publication of state-of-the-art reviews. Manuscripts applying known methods to previously solved problems or providing results in the absence of scientific motivation or application will not be accepted. Submitted articles should contribute to the understanding of specific scientific problems or to solution techniques that are useful in applications. Papers that link theory with computational practice to provide insight into the processes are welcome.