Kiran Kumar , Alexandre A. Arnold , Raphaël Gauthier , Marius Mamone , Jean-François Paquin , Dror E. Warschawski , Isabelle Marcotte
{"title":"用 19F 固态核磁共振方法探究抗菌肽与全细胞膜的相互作用。","authors":"Kiran Kumar , Alexandre A. Arnold , Raphaël Gauthier , Marius Mamone , Jean-François Paquin , Dror E. Warschawski , Isabelle Marcotte","doi":"10.1016/j.bbamem.2023.184269","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>To address the global problem of bacterial antibiotic resistance, </span>antimicrobial peptides (AMPs) are considered promising therapeutic candidates due to their broad-spectrum and membrane-lytic activity. As preferential interactions with bacteria are crucial, it is equally important to investigate and understand their impact on eukaryotic cells. In this study, we employed </span><sup>19</sup><span>F solid-state nuclear magnetic resonance (ssNMR) as a novel approach to examine the interaction of AMPs with whole red blood cells (RBCs). We used RBC ghosts<span> (devoid of hemoglobin) and developed a protocol to label their lipid membranes<span> with palmitic acid (PA) monofluorinated at carbon positions 4, 8, or 14 on the acyl chain, allowing us to probe different locations in model and intact RBC ghost membranes. Our work revealed that changes in the </span></span></span><sup>19</sup>F chemical shift anisotropy, monitored through a C<img>F bond order parameter (S<sub>CF</sub><span>), can provide insights into lipid bilayer dynamics. This information was also obtained using magic-angle spinning </span><sup>19</sup>F ssNMR spectra with and without <sup>1</sup>H decoupling, by studying alterations in the second spectral moment (M<sub>2</sub>) as well as the <sup>19</sup><span>F isotropic chemical shift, linewidth, T</span><sub>1</sub>, and T<sub>2</sub> relaxation times. The appearance of an additional isotropic peak with a smaller chemical shift anisotropy, a narrower linewidth, and a shorter T<sub>1,</sub> induced by the AMP caerin 1.1, supports the presence of high-curvature regions in RBCs indicative of pore formation, analogous to its antimicrobial mechanism. In summary, the straightforward incorporation of monofluorinated FAs and rapid signal acquisition offer promising avenues for the study of whole cells using <sup>19</sup>F ssNMR.</p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 3","pages":"Article 184269"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"19F solid-state NMR approaches to probe antimicrobial peptide interactions with membranes in whole cells\",\"authors\":\"Kiran Kumar , Alexandre A. Arnold , Raphaël Gauthier , Marius Mamone , Jean-François Paquin , Dror E. Warschawski , Isabelle Marcotte\",\"doi\":\"10.1016/j.bbamem.2023.184269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>To address the global problem of bacterial antibiotic resistance, </span>antimicrobial peptides (AMPs) are considered promising therapeutic candidates due to their broad-spectrum and membrane-lytic activity. As preferential interactions with bacteria are crucial, it is equally important to investigate and understand their impact on eukaryotic cells. In this study, we employed </span><sup>19</sup><span>F solid-state nuclear magnetic resonance (ssNMR) as a novel approach to examine the interaction of AMPs with whole red blood cells (RBCs). We used RBC ghosts<span> (devoid of hemoglobin) and developed a protocol to label their lipid membranes<span> with palmitic acid (PA) monofluorinated at carbon positions 4, 8, or 14 on the acyl chain, allowing us to probe different locations in model and intact RBC ghost membranes. Our work revealed that changes in the </span></span></span><sup>19</sup>F chemical shift anisotropy, monitored through a C<img>F bond order parameter (S<sub>CF</sub><span>), can provide insights into lipid bilayer dynamics. This information was also obtained using magic-angle spinning </span><sup>19</sup>F ssNMR spectra with and without <sup>1</sup>H decoupling, by studying alterations in the second spectral moment (M<sub>2</sub>) as well as the <sup>19</sup><span>F isotropic chemical shift, linewidth, T</span><sub>1</sub>, and T<sub>2</sub> relaxation times. The appearance of an additional isotropic peak with a smaller chemical shift anisotropy, a narrower linewidth, and a shorter T<sub>1,</sub> induced by the AMP caerin 1.1, supports the presence of high-curvature regions in RBCs indicative of pore formation, analogous to its antimicrobial mechanism. In summary, the straightforward incorporation of monofluorinated FAs and rapid signal acquisition offer promising avenues for the study of whole cells using <sup>19</sup>F ssNMR.</p></div>\",\"PeriodicalId\":8831,\"journal\":{\"name\":\"Biochimica et biophysica acta. Biomembranes\",\"volume\":\"1866 3\",\"pages\":\"Article 184269\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Biomembranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005273623001517\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273623001517","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
19F solid-state NMR approaches to probe antimicrobial peptide interactions with membranes in whole cells
To address the global problem of bacterial antibiotic resistance, antimicrobial peptides (AMPs) are considered promising therapeutic candidates due to their broad-spectrum and membrane-lytic activity. As preferential interactions with bacteria are crucial, it is equally important to investigate and understand their impact on eukaryotic cells. In this study, we employed 19F solid-state nuclear magnetic resonance (ssNMR) as a novel approach to examine the interaction of AMPs with whole red blood cells (RBCs). We used RBC ghosts (devoid of hemoglobin) and developed a protocol to label their lipid membranes with palmitic acid (PA) monofluorinated at carbon positions 4, 8, or 14 on the acyl chain, allowing us to probe different locations in model and intact RBC ghost membranes. Our work revealed that changes in the 19F chemical shift anisotropy, monitored through a CF bond order parameter (SCF), can provide insights into lipid bilayer dynamics. This information was also obtained using magic-angle spinning 19F ssNMR spectra with and without 1H decoupling, by studying alterations in the second spectral moment (M2) as well as the 19F isotropic chemical shift, linewidth, T1, and T2 relaxation times. The appearance of an additional isotropic peak with a smaller chemical shift anisotropy, a narrower linewidth, and a shorter T1, induced by the AMP caerin 1.1, supports the presence of high-curvature regions in RBCs indicative of pore formation, analogous to its antimicrobial mechanism. In summary, the straightforward incorporation of monofluorinated FAs and rapid signal acquisition offer promising avenues for the study of whole cells using 19F ssNMR.
期刊介绍:
BBA Biomembranes has its main focus on membrane structure, function and biomolecular organization, membrane proteins, receptors, channels and anchors, fluidity and composition, model membranes and liposomes, membrane surface studies and ligand interactions, transport studies, and membrane dynamics.