呼吸丙酮监测对减少体脂和改善身体成分的效果:随机对照研究

IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of breath research Pub Date : 2024-01-18 DOI:10.1088/1752-7163/ad1b19
Seonggyu Choi, Minsuk Oh, Okimitsu Oyama, Dong-Hyuk Park, Sunghyun Hong, Tae Ho Lee, Junho Hwang, Hyun-Sook Lee, Yong-Sahm Choe, Wooyoung Lee, Justin Y Jeon
{"title":"呼吸丙酮监测对减少体脂和改善身体成分的效果:随机对照研究","authors":"Seonggyu Choi, Minsuk Oh, Okimitsu Oyama, Dong-Hyuk Park, Sunghyun Hong, Tae Ho Lee, Junho Hwang, Hyun-Sook Lee, Yong-Sahm Choe, Wooyoung Lee, Justin Y Jeon","doi":"10.1088/1752-7163/ad1b19","DOIUrl":null,"url":null,"abstract":"<p><p>When attempts to lose body fat mass frequently fail, breath acetone (BA) monitoring may assist fat mass loss during a low-carbohydrate diet as it can provide real-time body fat oxidation levels. This randomized controlled study aimed to evaluate the effectiveness of monitoring BA levels and providing feedback on fat oxidation during a three-week low-carbohydrate diet intervention. Forty-seven participants (mean age = 27.8 ± 4.4 years, 53.3% females, body mass index = 24.1 ± 3.4 kg m<sup>-2</sup>) were randomly assigned to three groups (1:1:1 ratio): daily BA assessment with a low-carbohydrate diet, body weight assessment (body scale (BS)) with a low-carbohydrate diet, and low-carbohydrate diet only. Primary outcome was the change in fat mass and secondary outcomes were the changes in body weight and body composition. Forty-five participants completed the study (compliance rate: 95.7%). Fat mass was significantly reduced in all three groups (all<i>P</i>< 0.05); however, the greatest reduction in fat mass was observed in the BA group compared to the BS (differences in changes in fat mass, -1.1 kg; 95% confidence interval: -2.3, -0.2;<i>P</i>= 0.040) and control (differences in changes in fat mass, -1.3 kg; 95% confidence interval: -2.1, -0.4;<i>P</i>= 0.013) groups. The BA group showed significantly greater reductions in body weight and visceral fat mass than the BS and control groups (all<i>P</i>< 0.05). In addition, the percent body fat and skeletal muscle mass were significantly reduced in both BA and BS groups (all<i>P</i>< 0.05). However, no significant differences were found in changes in body fat percentage and skeletal muscle mass between the study groups. Monitoring BA levels, which could have motivated participants to adhere more closely to the low-carbohydrate diet, to assess body fat oxidation rates may be an effective intervention for reducing body fat mass (compared to body weight assessment or control conditions). This approach could be beneficial for individuals seeking to manage body fat and prevent obesity.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effectiveness of breath acetone monitoring in reducing body fat and improving body composition: a randomized controlled study.\",\"authors\":\"Seonggyu Choi, Minsuk Oh, Okimitsu Oyama, Dong-Hyuk Park, Sunghyun Hong, Tae Ho Lee, Junho Hwang, Hyun-Sook Lee, Yong-Sahm Choe, Wooyoung Lee, Justin Y Jeon\",\"doi\":\"10.1088/1752-7163/ad1b19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When attempts to lose body fat mass frequently fail, breath acetone (BA) monitoring may assist fat mass loss during a low-carbohydrate diet as it can provide real-time body fat oxidation levels. This randomized controlled study aimed to evaluate the effectiveness of monitoring BA levels and providing feedback on fat oxidation during a three-week low-carbohydrate diet intervention. Forty-seven participants (mean age = 27.8 ± 4.4 years, 53.3% females, body mass index = 24.1 ± 3.4 kg m<sup>-2</sup>) were randomly assigned to three groups (1:1:1 ratio): daily BA assessment with a low-carbohydrate diet, body weight assessment (body scale (BS)) with a low-carbohydrate diet, and low-carbohydrate diet only. Primary outcome was the change in fat mass and secondary outcomes were the changes in body weight and body composition. Forty-five participants completed the study (compliance rate: 95.7%). Fat mass was significantly reduced in all three groups (all<i>P</i>< 0.05); however, the greatest reduction in fat mass was observed in the BA group compared to the BS (differences in changes in fat mass, -1.1 kg; 95% confidence interval: -2.3, -0.2;<i>P</i>= 0.040) and control (differences in changes in fat mass, -1.3 kg; 95% confidence interval: -2.1, -0.4;<i>P</i>= 0.013) groups. The BA group showed significantly greater reductions in body weight and visceral fat mass than the BS and control groups (all<i>P</i>< 0.05). In addition, the percent body fat and skeletal muscle mass were significantly reduced in both BA and BS groups (all<i>P</i>< 0.05). However, no significant differences were found in changes in body fat percentage and skeletal muscle mass between the study groups. Monitoring BA levels, which could have motivated participants to adhere more closely to the low-carbohydrate diet, to assess body fat oxidation rates may be an effective intervention for reducing body fat mass (compared to body weight assessment or control conditions). This approach could be beneficial for individuals seeking to manage body fat and prevent obesity.</p>\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/ad1b19\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ad1b19","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

当试图减少体内脂肪量的努力经常失败时,呼气丙酮监测可提供实时的体内脂肪氧化水平,因此可能有助于在低碳水化合物饮食期间减少脂肪量。这项随机对照研究旨在评估在为期三周的低碳水化合物饮食干预期间监测呼气丙酮水平和提供脂肪氧化反馈的有效性。47名参与者(平均年龄=27.8±4.4岁,女性占53.3%,体重指数=24.1±3.4 kg/m2)被随机分配到三组(1:1:1比例):每日呼气丙酮评估与低碳水化合物饮食组、体重评估(体重秤)与低碳水化合物饮食组和仅低碳水化合物饮食组。主要结果是脂肪量的变化,次要结果是体重和身体成分的变化。45 名参与者完成了研究(符合率:95.7%)。所有三个组的脂肪量都明显减少(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effectiveness of breath acetone monitoring in reducing body fat and improving body composition: a randomized controlled study.

When attempts to lose body fat mass frequently fail, breath acetone (BA) monitoring may assist fat mass loss during a low-carbohydrate diet as it can provide real-time body fat oxidation levels. This randomized controlled study aimed to evaluate the effectiveness of monitoring BA levels and providing feedback on fat oxidation during a three-week low-carbohydrate diet intervention. Forty-seven participants (mean age = 27.8 ± 4.4 years, 53.3% females, body mass index = 24.1 ± 3.4 kg m-2) were randomly assigned to three groups (1:1:1 ratio): daily BA assessment with a low-carbohydrate diet, body weight assessment (body scale (BS)) with a low-carbohydrate diet, and low-carbohydrate diet only. Primary outcome was the change in fat mass and secondary outcomes were the changes in body weight and body composition. Forty-five participants completed the study (compliance rate: 95.7%). Fat mass was significantly reduced in all three groups (allP< 0.05); however, the greatest reduction in fat mass was observed in the BA group compared to the BS (differences in changes in fat mass, -1.1 kg; 95% confidence interval: -2.3, -0.2;P= 0.040) and control (differences in changes in fat mass, -1.3 kg; 95% confidence interval: -2.1, -0.4;P= 0.013) groups. The BA group showed significantly greater reductions in body weight and visceral fat mass than the BS and control groups (allP< 0.05). In addition, the percent body fat and skeletal muscle mass were significantly reduced in both BA and BS groups (allP< 0.05). However, no significant differences were found in changes in body fat percentage and skeletal muscle mass between the study groups. Monitoring BA levels, which could have motivated participants to adhere more closely to the low-carbohydrate diet, to assess body fat oxidation rates may be an effective intervention for reducing body fat mass (compared to body weight assessment or control conditions). This approach could be beneficial for individuals seeking to manage body fat and prevent obesity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of breath research
Journal of breath research BIOCHEMICAL RESEARCH METHODS-RESPIRATORY SYSTEM
CiteScore
7.60
自引率
21.10%
发文量
49
审稿时长
>12 weeks
期刊介绍: Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics. Typical areas of interest include: Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research. Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments. Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway. Cellular and molecular level in vitro studies. Clinical, pharmacological and forensic applications. Mathematical, statistical and graphical data interpretation.
期刊最新文献
Therapeutic efficacy of a probiotic preparation on idiopathic halitosis: a retrospective observational study. Halitosis in oral lichen planus patients. Effectiveness of a combination of laccase and green coffee extract on oral malodor: A comparative, randomized, controlled, evaluator-blind, parallel-group trial. Validation of a sensor system for the measurement of breath ammonia using selected-ion flow-tube mass spectrometry. Identifying viral infections through analysis of head space volatile organic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1