Hafsa Amjad , Faiza Saleem , Munir Ahmad , Uzma Nisar , Hamza Arshad Dar
{"title":"基于生物信息学的牛糜蛋白酶蛋白全面注释和功能表征揭示了新的生物学见解","authors":"Hafsa Amjad , Faiza Saleem , Munir Ahmad , Uzma Nisar , Hamza Arshad Dar","doi":"10.1016/j.fochms.2023.100191","DOIUrl":null,"url":null,"abstract":"<div><p>Chymosin, an aspartic protease present in the stomachs of young ruminants like cows (bovine), causes milk coagulation and cheese production through the breakdown of κ-casein peptide bonds at the Met105-Phe106 site. Bovine chymosin is first synthesized as a pre-prochymosin that is cleaved to produce the mature chymosin protein. Despite significant strides in research, our understanding of this crucial enzyme remains incomplete. The purpose of this work was to perform <em>in silico</em> evolutionary and functional analysis and to gain unique insights into the structure of this protein. For this, the sequence of <em>Bos taurus</em> chymosin from UniProt database was subjected to various bioinformatics analyses. We found that bovine chymosin is a low molecular weight and hydrophilic protein that has homologs in other Bovidae species. Two active sites of aspartic peptidases, along with a functional domain, were identified. Gene Ontology analysis further confirmed chymosin's involvement in proteolysis and aspartic endopeptidase activity. Potential disordered residues and post-translational modification sites were also uncovered. It was revealed that the secondary structure of bovine chymosin is comprised of beta strands (44.27%), coils (43.65%), and alpha helices (12.07%). A highly optimized 3D structure was also obtained. Moreover, crucial protein–protein interactions were unveiled. Altogether, these findings provide valuable insights that could guide future research on bovine chymosin and its biological roles.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"8 ","pages":"Article 100191"},"PeriodicalIF":4.1000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266656622300031X/pdfft?md5=f47bad2a169fb2c9bf0e1a17fe0b24aa&pid=1-s2.0-S266656622300031X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Comprehensive bioinformatics-based annotation and functional characterization of bovine chymosin protein revealed novel biological insights\",\"authors\":\"Hafsa Amjad , Faiza Saleem , Munir Ahmad , Uzma Nisar , Hamza Arshad Dar\",\"doi\":\"10.1016/j.fochms.2023.100191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chymosin, an aspartic protease present in the stomachs of young ruminants like cows (bovine), causes milk coagulation and cheese production through the breakdown of κ-casein peptide bonds at the Met105-Phe106 site. Bovine chymosin is first synthesized as a pre-prochymosin that is cleaved to produce the mature chymosin protein. Despite significant strides in research, our understanding of this crucial enzyme remains incomplete. The purpose of this work was to perform <em>in silico</em> evolutionary and functional analysis and to gain unique insights into the structure of this protein. For this, the sequence of <em>Bos taurus</em> chymosin from UniProt database was subjected to various bioinformatics analyses. We found that bovine chymosin is a low molecular weight and hydrophilic protein that has homologs in other Bovidae species. Two active sites of aspartic peptidases, along with a functional domain, were identified. Gene Ontology analysis further confirmed chymosin's involvement in proteolysis and aspartic endopeptidase activity. Potential disordered residues and post-translational modification sites were also uncovered. It was revealed that the secondary structure of bovine chymosin is comprised of beta strands (44.27%), coils (43.65%), and alpha helices (12.07%). A highly optimized 3D structure was also obtained. Moreover, crucial protein–protein interactions were unveiled. Altogether, these findings provide valuable insights that could guide future research on bovine chymosin and its biological roles.</p></div>\",\"PeriodicalId\":34477,\"journal\":{\"name\":\"Food Chemistry Molecular Sciences\",\"volume\":\"8 \",\"pages\":\"Article 100191\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266656622300031X/pdfft?md5=f47bad2a169fb2c9bf0e1a17fe0b24aa&pid=1-s2.0-S266656622300031X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry Molecular Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266656622300031X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266656622300031X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Comprehensive bioinformatics-based annotation and functional characterization of bovine chymosin protein revealed novel biological insights
Chymosin, an aspartic protease present in the stomachs of young ruminants like cows (bovine), causes milk coagulation and cheese production through the breakdown of κ-casein peptide bonds at the Met105-Phe106 site. Bovine chymosin is first synthesized as a pre-prochymosin that is cleaved to produce the mature chymosin protein. Despite significant strides in research, our understanding of this crucial enzyme remains incomplete. The purpose of this work was to perform in silico evolutionary and functional analysis and to gain unique insights into the structure of this protein. For this, the sequence of Bos taurus chymosin from UniProt database was subjected to various bioinformatics analyses. We found that bovine chymosin is a low molecular weight and hydrophilic protein that has homologs in other Bovidae species. Two active sites of aspartic peptidases, along with a functional domain, were identified. Gene Ontology analysis further confirmed chymosin's involvement in proteolysis and aspartic endopeptidase activity. Potential disordered residues and post-translational modification sites were also uncovered. It was revealed that the secondary structure of bovine chymosin is comprised of beta strands (44.27%), coils (43.65%), and alpha helices (12.07%). A highly optimized 3D structure was also obtained. Moreover, crucial protein–protein interactions were unveiled. Altogether, these findings provide valuable insights that could guide future research on bovine chymosin and its biological roles.