{"title":"激光束粉末床熔融铝-铁-铜合金,实现高强度和高导热性","authors":"Yue Cheng , Takanobu Miyawaki , Wenyuan Wang , Naoki Takata , Asuka Suzuki , Makoto Kobashi , Masaki Kato","doi":"10.1016/j.addlet.2023.100191","DOIUrl":null,"url":null,"abstract":"<div><p>Laser-beam powder bed fusion (PBF-LB) technique was used to produce an Al–2.5 %Fe–2 %Cu ternary alloy, featuring a two-phase eutectic composition of α-Al/Al<sub>23</sub>CuFe<sub>4</sub> in non-equilibrium solidification, as determined by thermodynamic calculations. The specimen manufactured by PBF-LB exhibited a high tensile strength exceeding 350 MPa and a low thermal conductivity of approximately 140 W m<sup>−1</sup> K<sup>−1</sup>. Subsequent annealing at 300 °C improved the thermal conductivity to 175 W m<sup>−1</sup> K<sup>−1</sup> without compromising the strength. This improvement was attributable to forming numerous Al<sub>23</sub>CuFe<sub>4</sub> nanoprecipitates, which consumed solute elements. By appropriately managing the factors contributing to strengthening, a superior strength–conductivity balance can be achieved by implementing post-heat treatments.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369023000713/pdfft?md5=65e265990c9b1b7962037fb8fa603be0&pid=1-s2.0-S2772369023000713-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Laser-beam powder bed fusion of Al–Fe–Cu alloy to achieve high strength and thermal conductivity\",\"authors\":\"Yue Cheng , Takanobu Miyawaki , Wenyuan Wang , Naoki Takata , Asuka Suzuki , Makoto Kobashi , Masaki Kato\",\"doi\":\"10.1016/j.addlet.2023.100191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser-beam powder bed fusion (PBF-LB) technique was used to produce an Al–2.5 %Fe–2 %Cu ternary alloy, featuring a two-phase eutectic composition of α-Al/Al<sub>23</sub>CuFe<sub>4</sub> in non-equilibrium solidification, as determined by thermodynamic calculations. The specimen manufactured by PBF-LB exhibited a high tensile strength exceeding 350 MPa and a low thermal conductivity of approximately 140 W m<sup>−1</sup> K<sup>−1</sup>. Subsequent annealing at 300 °C improved the thermal conductivity to 175 W m<sup>−1</sup> K<sup>−1</sup> without compromising the strength. This improvement was attributable to forming numerous Al<sub>23</sub>CuFe<sub>4</sub> nanoprecipitates, which consumed solute elements. By appropriately managing the factors contributing to strengthening, a superior strength–conductivity balance can be achieved by implementing post-heat treatments.</p></div>\",\"PeriodicalId\":72068,\"journal\":{\"name\":\"Additive manufacturing letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772369023000713/pdfft?md5=65e265990c9b1b7962037fb8fa603be0&pid=1-s2.0-S2772369023000713-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772369023000713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369023000713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
摘要
利用激光束粉末床熔融(PBF-LB)技术生产了一种 Al-2.5 %Fe-2 %Cu 三元合金,通过热力学计算确定,该合金在非平衡凝固过程中具有 α-Al/Al23CuFe4 两相共晶成分。PBF-LB 制造的试样具有超过 350 兆帕的高抗拉强度和约 140 W m-1 K-1 的低导热率。随后在 300 °C 下退火将热导率提高到 175 W m-1 K-1,同时不影响强度。这一改善归功于形成了大量的 Al23CuFe4 纳米沉淀物,这些沉淀物消耗了溶质元素。通过对导致强化的因素进行适当的管理,可以通过实施后热处理实现出色的强度-导电率平衡。
Laser-beam powder bed fusion of Al–Fe–Cu alloy to achieve high strength and thermal conductivity
Laser-beam powder bed fusion (PBF-LB) technique was used to produce an Al–2.5 %Fe–2 %Cu ternary alloy, featuring a two-phase eutectic composition of α-Al/Al23CuFe4 in non-equilibrium solidification, as determined by thermodynamic calculations. The specimen manufactured by PBF-LB exhibited a high tensile strength exceeding 350 MPa and a low thermal conductivity of approximately 140 W m−1 K−1. Subsequent annealing at 300 °C improved the thermal conductivity to 175 W m−1 K−1 without compromising the strength. This improvement was attributable to forming numerous Al23CuFe4 nanoprecipitates, which consumed solute elements. By appropriately managing the factors contributing to strengthening, a superior strength–conductivity balance can be achieved by implementing post-heat treatments.