利用深度图像先验进行空间插值和条件地图生成,用于环境应用

IF 2.8 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Mathematical Geosciences Pub Date : 2024-01-03 DOI:10.1007/s11004-023-10125-2
Herbert Rakotonirina, Ignacio Guridi, Paul Honeine, Olivier Atteia, Antonin Van Exem
{"title":"利用深度图像先验进行空间插值和条件地图生成,用于环境应用","authors":"Herbert Rakotonirina, Ignacio Guridi, Paul Honeine, Olivier Atteia, Antonin Van Exem","doi":"10.1007/s11004-023-10125-2","DOIUrl":null,"url":null,"abstract":"<p>Kriging is the most widely used spatial interpolation method in geostatistics. For many environmental applications, kriging may have to satisfy the stationarity and isotropy hypothesis, and new techniques using machine learning suffer from a lack of labeled data. In this paper, we propose the use of deep image prior, which is a U-net-like deep neural network designed for image reconstruction, to perform spatial interpolation and conditional map generation without any prior learning. This approach allows us to overcome the assumptions for kriging as well as the lack of labeled data when proposing uncertainty and probability above a certain threshold. The proposed method is based on a convolutional neural network that generates a map from random values by minimizing the difference between the output map and the observed values. With this new method of spatial interpolation, we generate <i>n</i> maps to obtain a map of uncertainty and a map of probability of exceeding the threshold. Experiments demonstrate the relevance of the proposed methods for spatial interpolation on both the well-known digital elevation model data and the more challenging case of pollution mapping. The results obtained with the three datasets demonstrate competitive performance compared with state-of-the-art methods.\n</p>","PeriodicalId":51117,"journal":{"name":"Mathematical Geosciences","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Interpolation and Conditional Map Generation Using Deep Image Prior for Environmental Applications\",\"authors\":\"Herbert Rakotonirina, Ignacio Guridi, Paul Honeine, Olivier Atteia, Antonin Van Exem\",\"doi\":\"10.1007/s11004-023-10125-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Kriging is the most widely used spatial interpolation method in geostatistics. For many environmental applications, kriging may have to satisfy the stationarity and isotropy hypothesis, and new techniques using machine learning suffer from a lack of labeled data. In this paper, we propose the use of deep image prior, which is a U-net-like deep neural network designed for image reconstruction, to perform spatial interpolation and conditional map generation without any prior learning. This approach allows us to overcome the assumptions for kriging as well as the lack of labeled data when proposing uncertainty and probability above a certain threshold. The proposed method is based on a convolutional neural network that generates a map from random values by minimizing the difference between the output map and the observed values. With this new method of spatial interpolation, we generate <i>n</i> maps to obtain a map of uncertainty and a map of probability of exceeding the threshold. Experiments demonstrate the relevance of the proposed methods for spatial interpolation on both the well-known digital elevation model data and the more challenging case of pollution mapping. The results obtained with the three datasets demonstrate competitive performance compared with state-of-the-art methods.\\n</p>\",\"PeriodicalId\":51117,\"journal\":{\"name\":\"Mathematical Geosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11004-023-10125-2\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-023-10125-2","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

克里金法是地质统计学中应用最广泛的空间插值方法。对于许多环境应用来说,克里金法可能必须满足静止性和各向同性假设,而使用机器学习的新技术又受到缺乏标记数据的困扰。在本文中,我们提出使用深度图像先验(一种专为图像重建设计的类 U-net 深度神经网络)来执行空间插值和条件地图生成,而无需任何先验学习。这种方法使我们能够克服克里金法的假设,以及在提出不确定性和概率超过一定阈值时缺乏标记数据的问题。所提出的方法以卷积神经网络为基础,通过最小化输出地图与观测值之间的差异,从随机值生成地图。利用这种新的空间插值方法,我们生成了 n 幅地图,从而获得了不确定性地图和超过阈值的概率地图。实验证明,无论是在众所周知的数字高程模型数据上,还是在更具挑战性的污染地图绘制上,所提出的空间插值方法都非常实用。与最先进的方法相比,使用这三种数据集获得的结果表明了具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial Interpolation and Conditional Map Generation Using Deep Image Prior for Environmental Applications

Kriging is the most widely used spatial interpolation method in geostatistics. For many environmental applications, kriging may have to satisfy the stationarity and isotropy hypothesis, and new techniques using machine learning suffer from a lack of labeled data. In this paper, we propose the use of deep image prior, which is a U-net-like deep neural network designed for image reconstruction, to perform spatial interpolation and conditional map generation without any prior learning. This approach allows us to overcome the assumptions for kriging as well as the lack of labeled data when proposing uncertainty and probability above a certain threshold. The proposed method is based on a convolutional neural network that generates a map from random values by minimizing the difference between the output map and the observed values. With this new method of spatial interpolation, we generate n maps to obtain a map of uncertainty and a map of probability of exceeding the threshold. Experiments demonstrate the relevance of the proposed methods for spatial interpolation on both the well-known digital elevation model data and the more challenging case of pollution mapping. The results obtained with the three datasets demonstrate competitive performance compared with state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Geosciences
Mathematical Geosciences 地学-地球科学综合
CiteScore
5.30
自引率
15.40%
发文量
50
审稿时长
>12 weeks
期刊介绍: Mathematical Geosciences (formerly Mathematical Geology) publishes original, high-quality, interdisciplinary papers in geomathematics focusing on quantitative methods and studies of the Earth, its natural resources and the environment. This international publication is the official journal of the IAMG. Mathematical Geosciences is an essential reference for researchers and practitioners of geomathematics who develop and apply quantitative models to earth science and geo-engineering problems.
期刊最新文献
Optimization of Borehole Thermal Energy Storage Systems Using a Genetic Algorithm Spatial-Spectrum Two-Branch Model Based on a Superpixel Graph Convolutional Network and 1DCNN for Geochemical Anomaly Identification Quantifying and Analyzing the Uncertainty in Fault Interpretation Using Entropy Robust Optimization Using the Mean Model with Bias Correction Extension of Fourier Neural Operator from Three-Dimensional (x, y, t) to Four-Dimensional (x, y, z, t) Subsurface Flow Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1