Yan Gao, Qiubo Li, Wei Wu, Qiwei Wang, Yizhe Su, Junxi Zhang, Deyuan Lin, Xiaojian Xia
{"title":"大气腐蚀加速效应对载流条件下商用铝合金的影响","authors":"Yan Gao, Qiubo Li, Wei Wu, Qiwei Wang, Yizhe Su, Junxi Zhang, Deyuan Lin, Xiaojian Xia","doi":"10.1108/acmm-06-2023-2818","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this paper is to study the effect of current-carrying condition on the electrochemical process and atmospheric corrosion behavior of the commercial aluminum alloys.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Potentiodynamic polarization tests were performed to study the electrochemical process of the aluminum alloys. Salt spray tests and weight loss tests were carried out to study the atmospheric corrosion behavior. The corrosion morphology of the alloys was observed, and the products were analyzed.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The corrosion process of four aluminum alloys was accelerated in the current-carrying condition. Moreover, the acceleration effect on A2024 and A7075 was much stronger than that on A1050 and A5052. The main factors would be the differences in microstructure and corrosion resistance between these alloys. As the carried current increased, the corrosion rate and corrosion current density of the aluminum alloys gradually increased, with the protection of the corrosion product film decreasing linearly.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This is a recent study on the corrosion behavior of conductors under current-carrying condition, which truly understands the corrosion status of power grid materials. Relevant results provide support for the corrosion protection and safe service of aluminum alloy in power systems.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atmospheric corrosion acceleration effect on commercial aluminum alloys in current-carrying condition\",\"authors\":\"Yan Gao, Qiubo Li, Wei Wu, Qiwei Wang, Yizhe Su, Junxi Zhang, Deyuan Lin, Xiaojian Xia\",\"doi\":\"10.1108/acmm-06-2023-2818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The purpose of this paper is to study the effect of current-carrying condition on the electrochemical process and atmospheric corrosion behavior of the commercial aluminum alloys.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>Potentiodynamic polarization tests were performed to study the electrochemical process of the aluminum alloys. Salt spray tests and weight loss tests were carried out to study the atmospheric corrosion behavior. The corrosion morphology of the alloys was observed, and the products were analyzed.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The corrosion process of four aluminum alloys was accelerated in the current-carrying condition. Moreover, the acceleration effect on A2024 and A7075 was much stronger than that on A1050 and A5052. The main factors would be the differences in microstructure and corrosion resistance between these alloys. As the carried current increased, the corrosion rate and corrosion current density of the aluminum alloys gradually increased, with the protection of the corrosion product film decreasing linearly.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This is a recent study on the corrosion behavior of conductors under current-carrying condition, which truly understands the corrosion status of power grid materials. Relevant results provide support for the corrosion protection and safe service of aluminum alloy in power systems.</p><!--/ Abstract__block -->\",\"PeriodicalId\":8217,\"journal\":{\"name\":\"Anti-corrosion Methods and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-corrosion Methods and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/acmm-06-2023-2818\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/acmm-06-2023-2818","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Atmospheric corrosion acceleration effect on commercial aluminum alloys in current-carrying condition
Purpose
The purpose of this paper is to study the effect of current-carrying condition on the electrochemical process and atmospheric corrosion behavior of the commercial aluminum alloys.
Design/methodology/approach
Potentiodynamic polarization tests were performed to study the electrochemical process of the aluminum alloys. Salt spray tests and weight loss tests were carried out to study the atmospheric corrosion behavior. The corrosion morphology of the alloys was observed, and the products were analyzed.
Findings
The corrosion process of four aluminum alloys was accelerated in the current-carrying condition. Moreover, the acceleration effect on A2024 and A7075 was much stronger than that on A1050 and A5052. The main factors would be the differences in microstructure and corrosion resistance between these alloys. As the carried current increased, the corrosion rate and corrosion current density of the aluminum alloys gradually increased, with the protection of the corrosion product film decreasing linearly.
Originality/value
This is a recent study on the corrosion behavior of conductors under current-carrying condition, which truly understands the corrosion status of power grid materials. Relevant results provide support for the corrosion protection and safe service of aluminum alloy in power systems.
期刊介绍:
Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world.
Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties.
• New methods, materials and software
• New developments in research and industry
• Stainless steels
• Protection of structural steelwork
• Industry update, conference news, dates and events
• Environmental issues
• Health & safety, including EC regulations
• Corrosion monitoring and plant health assessment
• The latest equipment and processes
• Corrosion cost and corrosion risk management.