{"title":"了解申诉的规范性记录与政府热线派单之间的关系:一种数据分析方法","authors":"Zicheng Zhang","doi":"10.1108/dta-02-2023-0029","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Advanced big data analysis and machine learning methods are concurrently used to unleash the value of the data generated by government hotline and help devise intelligent applications including automated process management, standard construction and more accurate dispatched orders to build high-quality government service platforms as more widely data-driven methods are in the process.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>In this study, based on the influence of the record specifications of texts related to work orders generated by the government hotline, machine learning tools are implemented and compared to optimize classify dispatching tasks by performing exploratory studies on the hotline work order text, including linguistics analysis of text feature processing, new word discovery, text clustering and text classification.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The complexity of the content of the work order is reduced by applying more standardized writing specifications based on combining text grammar numerical features. So, order dispatch success prediction accuracy rate reaches 89.6 per cent after running the LSTM model.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The proposed method can help improve the current dispatching processes run by the government hotline, better guide staff to standardize the writing format of work orders, improve the accuracy of order dispatching and provide innovative support to the current mechanism.</p><!--/ Abstract__block -->","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":"51 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the relationship between normative records of appeals and government hotline order dispatching: a data analysis method\",\"authors\":\"Zicheng Zhang\",\"doi\":\"10.1108/dta-02-2023-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Advanced big data analysis and machine learning methods are concurrently used to unleash the value of the data generated by government hotline and help devise intelligent applications including automated process management, standard construction and more accurate dispatched orders to build high-quality government service platforms as more widely data-driven methods are in the process.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>In this study, based on the influence of the record specifications of texts related to work orders generated by the government hotline, machine learning tools are implemented and compared to optimize classify dispatching tasks by performing exploratory studies on the hotline work order text, including linguistics analysis of text feature processing, new word discovery, text clustering and text classification.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The complexity of the content of the work order is reduced by applying more standardized writing specifications based on combining text grammar numerical features. So, order dispatch success prediction accuracy rate reaches 89.6 per cent after running the LSTM model.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The proposed method can help improve the current dispatching processes run by the government hotline, better guide staff to standardize the writing format of work orders, improve the accuracy of order dispatching and provide innovative support to the current mechanism.</p><!--/ Abstract__block -->\",\"PeriodicalId\":56156,\"journal\":{\"name\":\"Data Technologies and Applications\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Technologies and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/dta-02-2023-0029\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-02-2023-0029","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Understanding the relationship between normative records of appeals and government hotline order dispatching: a data analysis method
Purpose
Advanced big data analysis and machine learning methods are concurrently used to unleash the value of the data generated by government hotline and help devise intelligent applications including automated process management, standard construction and more accurate dispatched orders to build high-quality government service platforms as more widely data-driven methods are in the process.
Design/methodology/approach
In this study, based on the influence of the record specifications of texts related to work orders generated by the government hotline, machine learning tools are implemented and compared to optimize classify dispatching tasks by performing exploratory studies on the hotline work order text, including linguistics analysis of text feature processing, new word discovery, text clustering and text classification.
Findings
The complexity of the content of the work order is reduced by applying more standardized writing specifications based on combining text grammar numerical features. So, order dispatch success prediction accuracy rate reaches 89.6 per cent after running the LSTM model.
Originality/value
The proposed method can help improve the current dispatching processes run by the government hotline, better guide staff to standardize the writing format of work orders, improve the accuracy of order dispatching and provide innovative support to the current mechanism.