通过机器学习优化熔融电写三维印刷

IF 13.9 Q1 CHEMISTRY, MULTIDISCIPLINARY Aggregate (Hoboken, N.J.) Pub Date : 2024-01-04 DOI:10.1002/agt2.495
Ahmed Choukri Abdullah, Olgac Ozarslan, Sara Soltanabadi Farshi, Sajjad Rahmani Dabbagh, Savas Tasoglu
{"title":"通过机器学习优化熔融电写三维印刷","authors":"Ahmed Choukri Abdullah,&nbsp;Olgac Ozarslan,&nbsp;Sara Soltanabadi Farshi,&nbsp;Sajjad Rahmani Dabbagh,&nbsp;Savas Tasoglu","doi":"10.1002/agt2.495","DOIUrl":null,"url":null,"abstract":"<p>Melt electrowriting (MEW) is a solvent-free (i.e., no volatile chemicals), a high-resolution three-dimensional (3D) printing method that enables the fabrication of semi-flexible structures with rigid polymers. Despite its advantages, the MEW process is sensitive to changes in printing parameters (e.g., voltage, printing pressure, and temperature), which can cause fluid column breakage, jet lag, and/or fiber pulsing, ultimately deteriorating the resolution and printing quality. In spite of the commonly used error-and-trial method to determine the most suitable parameters, here, we present a machine learning (ML)-enabled image analysis-based method for determining the optimum MEW printing parameters through an easy-to-use graphical user interface (GUI). We trained five different ML algorithms using 168 MEW 3D print samples, among which the Gaussian process regression ML model yielded 93% accuracy of the variability in the dependent variable, 0.12329 on root mean square error for the validation set and 0.015201 mean square error in predicting line thickness. Integration of ML with a control feedback loop and MEW can reduce the error-and-trial steps prior to the 3D printing process, decreasing the printing time (i.e., increasing the overall throughput of MEW) and material waste (i.e., improving the cost-effectiveness of MEW). Moreover, embedding a trained ML model with the feedback control system in a GUI facilitates a more straightforward use of ML-based optimization techniques in the industrial section (i.e., for users with no ML skills).</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":null,"pages":null},"PeriodicalIF":13.9000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.495","citationCount":"0","resultStr":"{\"title\":\"Machine learning-enabled optimization of melt electro-writing three-dimensional printing\",\"authors\":\"Ahmed Choukri Abdullah,&nbsp;Olgac Ozarslan,&nbsp;Sara Soltanabadi Farshi,&nbsp;Sajjad Rahmani Dabbagh,&nbsp;Savas Tasoglu\",\"doi\":\"10.1002/agt2.495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Melt electrowriting (MEW) is a solvent-free (i.e., no volatile chemicals), a high-resolution three-dimensional (3D) printing method that enables the fabrication of semi-flexible structures with rigid polymers. Despite its advantages, the MEW process is sensitive to changes in printing parameters (e.g., voltage, printing pressure, and temperature), which can cause fluid column breakage, jet lag, and/or fiber pulsing, ultimately deteriorating the resolution and printing quality. In spite of the commonly used error-and-trial method to determine the most suitable parameters, here, we present a machine learning (ML)-enabled image analysis-based method for determining the optimum MEW printing parameters through an easy-to-use graphical user interface (GUI). We trained five different ML algorithms using 168 MEW 3D print samples, among which the Gaussian process regression ML model yielded 93% accuracy of the variability in the dependent variable, 0.12329 on root mean square error for the validation set and 0.015201 mean square error in predicting line thickness. Integration of ML with a control feedback loop and MEW can reduce the error-and-trial steps prior to the 3D printing process, decreasing the printing time (i.e., increasing the overall throughput of MEW) and material waste (i.e., improving the cost-effectiveness of MEW). Moreover, embedding a trained ML model with the feedback control system in a GUI facilitates a more straightforward use of ML-based optimization techniques in the industrial section (i.e., for users with no ML skills).</p>\",\"PeriodicalId\":72127,\"journal\":{\"name\":\"Aggregate (Hoboken, N.J.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.495\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aggregate (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agt2.495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

熔融电泳(MEW)是一种无溶剂(即无挥发性化学品)、高分辨率的三维(3D)打印方法,可使用刚性聚合物制造半柔性结构。尽管 MEW 工艺具有诸多优点,但它对打印参数(如电压、打印压力和温度)的变化非常敏感,这可能会导致液柱断裂、喷射滞后和/或纤维脉动,最终降低分辨率和打印质量。尽管通常使用误差-试验法来确定最合适的参数,但在此,我们提出了一种基于机器学习(ML)的图像分析方法,通过易于使用的图形用户界面(GUI)来确定最佳 MEW 印刷参数。我们使用 168 个 MEW 3D 打印样本训练了五种不同的 ML 算法,其中高斯过程回归 ML 模型的因变量变化准确率为 93%,验证集的均方根误差为 0.12329,预测线条厚度的均方根误差为 0.015201。将 ML 与控制反馈回路和 MEW 相结合,可以减少三维打印过程之前的错误和试验步骤,从而缩短打印时间(即提高 MEW 的总体产量)和减少材料浪费(即提高 MEW 的成本效益)。此外,在图形用户界面中嵌入经过训练的 ML 模型和反馈控制系统,有助于在工业部分更直接地使用基于 ML 的优化技术(即对于没有 ML 技能的用户)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning-enabled optimization of melt electro-writing three-dimensional printing

Melt electrowriting (MEW) is a solvent-free (i.e., no volatile chemicals), a high-resolution three-dimensional (3D) printing method that enables the fabrication of semi-flexible structures with rigid polymers. Despite its advantages, the MEW process is sensitive to changes in printing parameters (e.g., voltage, printing pressure, and temperature), which can cause fluid column breakage, jet lag, and/or fiber pulsing, ultimately deteriorating the resolution and printing quality. In spite of the commonly used error-and-trial method to determine the most suitable parameters, here, we present a machine learning (ML)-enabled image analysis-based method for determining the optimum MEW printing parameters through an easy-to-use graphical user interface (GUI). We trained five different ML algorithms using 168 MEW 3D print samples, among which the Gaussian process regression ML model yielded 93% accuracy of the variability in the dependent variable, 0.12329 on root mean square error for the validation set and 0.015201 mean square error in predicting line thickness. Integration of ML with a control feedback loop and MEW can reduce the error-and-trial steps prior to the 3D printing process, decreasing the printing time (i.e., increasing the overall throughput of MEW) and material waste (i.e., improving the cost-effectiveness of MEW). Moreover, embedding a trained ML model with the feedback control system in a GUI facilitates a more straightforward use of ML-based optimization techniques in the industrial section (i.e., for users with no ML skills).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Issue Information Inside Front Cover: Stimuli-responsive photoluminescent copper(I) halides for scintillation, anticounterfeiting, and light-emitting diode applications Inside Back Cover: Supramolecular self-assembled nanoparticles for targeted therapy of myocardial infarction by enhancing cardiomyocyte mitophagy Front Cover: Steric hindrance induced low exciton binding energy enables low-driving-force organic solar cells Back Cover: Lysine aggregates-based nanostructured antimicrobial peptides for cariogenic biofilm microenvironment-activated caries treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1